Формирование экологической системы планеты Земля |
Глава 4. Формирование экологической системы планеты Земля
Первая жизнь появилась в первичном океане (см. Главу 2) в силу целого ряда причин. Основная из них — поглощение морской водой жёсткого солнечного и космического излучения, губительного для всего живого на Земле. Другая причина, не менее важная, заключается в том, что в морской воде концентрировались не только неорганические молекулы, но также простые и сложные органические молекулы, возникшие из неорганических во время атмосферных электрических разрядов.
Вода океана постоянно насыщалась газами, составлявшими первичную атмосферу планеты: углекислым и сернистым, азотом, водородом, кислородом и другими газами. Всё это вместе является необходимыми условиями для возникновения жизни (качественные процессы, которые происходили в первичном океане, более подробно описаны в Главе 2).
Первыми живыми организмами, после вирусов, были простейшие одноклеточные растения, которые посредством фотосинтеза, поглощая видимый спектр солнечного излучения, стали сами внутри себя синтезировать органические соединения, необходимые для их жизнедеятельности. До появления фотосинтеза, простейшие организмы получали необходимые органические соединения только из морской воды, где, как говорилось выше, они возникали только во время атмосферных электрических разрядов.
Фотосинтез — эволюционное приобретение, давшее колоссальный толчок развитию жизни на планете.
Первые растительные организмы были ещё очень примитивными, усваивали только ничтожную часть солнечного света, падающего на поверхность первичного океана. Фитопланктон усваивал порядка 1,5-2% падающего солнечного света. Соответственно, скорость роста растительной биомассы зависела от, так называемого, биологического КПД (коэффициента полезного действия).
Фитопланктон начал покорять первичный океан, который был царством простейших одноклеточных растений. В процессе фотосинтеза, фитопланктон поглощал углекислый газ, растворённый в морской воде, и выделял, как побочный продукт, кислород. В ночное время, когда фотосинтез приостанавливался, фитопланктон использовал для своей жизнедеятельности синтезированные в дневное время органические соединения. Эти соединения помогали фитопланктону восстанавливаться и поддерживать целостность и активность его структуры.
При этом фитопланктон расщеплял органические соединения, и для этого процесса, обратного фотосинтезу, поглощал растворённый в окружающей его морской воде кислород, который, опять же, большей своей частью был продуктом фотосинтеза. Следовательно, при любом расщеплении органических соединений поглощается кислород, и, как побочный продукт распада, выделяется углекислый газ.
Животные микроорганизмы, (если не брать во внимание эвглену зелёную и ей подобных), даже при самых идеальных для них условиях, не могли появиться в первичном океане до тех пор, пока фитопланктон, а потом и более совершенные растительные организмы, не насытили поверхностный слой океана кислородом в таком количестве, чтобы обеспечить нормальную жизнедеятельность и для животных организмов, которые, опять таки, возникли в ходе эволюции из тех же простейших растительных организмов.
Таким образом, о первой простейшей экологической системе можно говорить лишь с момента появления животных, т.е. организмов, поглощающих органические соединения. Экологическая система есть ни что иное, как баланс между всеми формами и типами живых организмов и их средой обитания...
С появлением многоклеточных живых организмов начался следующий качественный этап развития жизни. Совершенствуясь в беспощадной борьбе за выживание, многоклеточные организмы, в первую очередь опять растительные, приобрели новые качества — распределение функций, происходящих в одноклеточном организме, между группами клеток, образовывающих этот многоклеточный организм.
Возникла специализация клеток на выполнение тех или иных функций, необходимых для нормальной жизнедеятельности всего многоклеточного организма. А это привело к тому, что в клетках многоклеточных растений, специализирующихся на фотосинтезе, повысилась активность этого процесса, и как следствие, увеличился биологический КПД, который у многоклеточных растении первичного океана — водорослей — уже составлял порядка 4%.
С появлением многоклеточных растительных организмов начался следующий бум роста биомассы в первичном океане. Это, в свою очередь, привело к бурному росту количества и многообразия животных многоклеточных организмов, которые, в силу своей большей активности, возникшей в результате борьбы за выживание, стали уже эволюционно доминировать над растительными организмами.
Тем не менее, они продолжали быть зависимыми от количества биомассы, создаваемой растениями в ходе фотосинтеза. Постепенно животные многоклеточные организмы разделились на три основных типа:
1) Растительноядные животные организмы.
2) Плотоядные животные организмы (поедающие растительноядные животные организмы).
3) Всеядные животные организмы, которые могли поедать как растения, так и животных.
Эволюционное развитие растительных организмов приводило к бурному развитию животных организмов. Экологическая система становилась всё более сложной и многообразной. Что и каким образом поддерживало гармонию, баланс между всеми её составляющими живыми организмами?
Пси-поля, излучаемые каждым живым организмом, стали основой механизма саморегулирования экологической системы. Саморегулирование происходило внутри каждого вида живых организмов (подробно этот механизм объяснялся в Главе 3).
Выделяемый в результате фотосинтеза кислород из морской воды попадал в атмосферу планеты, его концентрация постепенно росла. Во время атмосферных электрических разрядов часть атмосферного кислорода преобразовывалась в озон, по мере роста концентрации которого, в верхних слоях атмосферы стал возникать озоновый слой планеты.
Озоновый слой стал защитным экраном от жёсткого солнечного и космического излучения. С течением времени озоновый слой становился всё больше и больше, и наступила пора, когда его толщина стала достаточной для отражения большей части этого излучения. Возникли условия для развития жизни на поверхности суши планеты.
Первыми осваивать сушу начали растения, сначала развиваясь в пограничных зонах, потом уходя всё глубже и глубже в материки. Первыми покорили сушу плавуны, хвощи и папортникообразные. Развиваясь в условиях атмосферы, в которой концентрация углекислого газа во много раз больше его концентрации в морской воде, первые наземные растения шагнули дальше в механизме фотосинтеза. Биологический КПД этих растений достигал уже 5%.
За растениями на сушу вышли и животные. Первыми наземными животными были земноводные, появившиеся в результате эволюции кистепёрых рыб. Началось формирование экологической системы и на суше. Причём, развитие жизни на суше приобрело гораздо более бурный характер. Гигантские хвощи, плющи и папортникообразные создавали огромное количество растительной биомассы. Поедать такие гигантские растения могли только лишь крупные животные. На Земле наступило время гигантов...
Вслед за земноводными на суше появились пресмыкающиеся, которые имели целый ряд эволюционных преимуществ и вскоре стали доминировать на суше. Царство гигантов — динозавров продолжалось сотни миллионов лет. Но концентрация углекислого газа в атмосфере стала уменьшаться, так как огромные массы углекислого газа поглощались из атмосферы в результате фотосинтеза и становились составной частью биомассы планеты.
Накопленный до появления жизни в атмосфере углекислый газ был постепенно, за сотни миллионов лет, израсходован гигантскими растениями. Закончился «запас» углекислого газа планеты. Он продолжал поступать в атмосферу при извержениях вулканов и как продукт жизнедеятельности живых организмов. Постепенно тектоническая активность Земли уменьшалась, всё меньше и меньше газов выбрасывалось в атмосферу из недр, в том числе и углекислого газа. Это послужило причиной того, что гигантские растения суши стали погибать. Их оставалось всё меньше, и, в конечном итоге, это было одной из причин заката царства гигантов — динозавров...
Вместо растений-гигантов, плющей, хвощей и древовидных папоротников на эволюционную арену вышли более совершенные растительные организмы — голосеменные, биологический КПД которых уже достигал 7%. Гиганты, пока были благоприятные условия для их роста и развития, просто подавляли возможность развития голосеменных. И только с гибелью этих гигантов голосеменные растения получили свободу для своего развития.
Эти растения были значительно меньше своих предшественников. Животный мир, пришедший на смену царству гигантов, тоже был гораздо более скромным по своим размерам. Но эволюционно его сформировали более совершенные животные. Как осколки былого величия, в него вошли потомки динозавров и земноводных.
Следующий этап знаменовало появление покрытосеменных растений, биологический КПД которых уже достигал 10%, они однако, не пришли на смену голосеменным, как последние пришли на смену плющам, хвощам и папоротникообразным. Они просто освоили разные климатические пояса поверхности планеты. Причём, голосеменные оказались более приспособленными к суровым климатическим условиям и освоили более холодные климатические пояса планеты. По мере формирования флоры Земли, формировались её богатая фауна — животный мир.
Этот последний тип экологической системы сохранился и до наших дней. Природа не смогла пока создать растительный организм с большим, чем десять процентов, биологическим КПД. И если раньше появление нового типа растений приводило к бурному изменению животного мира, то с появлением покрытосеменных этот процесс прекратился.
Сначала новые, возникающие в ходе эволюции, виды заполняли свободные экологические ниши, а после заполнения вакансий, новый вид мог пробиться, лишь вытеснив из какой-либо экологической ниши другой вид, уже её занимающий. Это привело к качественной эволюции животных на планете. Эволюция животных перешла на другой качественный уровень, нормальное развитие которого обязательно приводит к появлению разума.
Всё это так или чуть по-другому происходило и происходит на многих планетах Большого Космоса. На нашей планете Земля тоже появился разумный вид — Homo Sapiens. Но homo sapiens пришёл извне и заселил экологическую нишу, занятую до него неандертальцами, возникшими в ходе эволюции жизни на планете. В силу того, что неандертальцы были более многочисленными, приспособленными к земным условиям и более сильными, Homo Sapiens сам в начале своего освоения планеты был просто не в состоянии вытеснить их. Это сделали за него. В экологическую нишу его вселили, кто и каким образом — мы разберём дальше...
Хотелось бы отметить лишь одну особенность, которая определяет тип животных организмов, у которых может возникнуть, в ходе эволюции, разум — это всеядность... И связано это с весьма простой причиной. Каждый организм в состоянии без вреда для себя расщепить определённую дозу яда, попадающего в него из окружающей среды.
Для каждого типа и вида существует своя критическая концентрация яда в организме, с которой этот организм в состоянии справиться. Если же в организм поступает больше, чем критическая доза какого-либо яда, избыток его действует угнетающе на те или иные функции или системы организма.
Так вот, растительные яды, которые в большей или меньшей степени есть в каждом растении, угнетающе действуют на клетки типа нейронов. И не случайно у растений нельзя найти клеток, по своему строению, подобных нейронам...
Травоядные животные, питаясь растениями, получают дозы растительных ядов большие, чем их организмы в состоянии расщепить. Избыток растительных ядов угнетающе действует на эволюцию нейронов и делает невозможным появление у нейронов этих животных верхнеастрального и ментального тел, без которого невозможно возникновение разума.
Плотоядные животные получают с пищей такое количество трупного (животного яда), которое их организм полностью расщепить не в состоянии. Трупный яд нарушает обменные механизмы организма, и нейроны мозга таких животных не получают нужного количества веществ, необходимых при зарождении и развитии ментальных тел.
Всеядные животные получают с пищей яды как одного, так и другого типа. Но количество этих ядов таково, что организм в состоянии расщепить их полностью, что и создаёт благоприятные условия для появления у всеядных животных нейронов, имеющих верхнеастральные и ментальные тела, при которых возможно возникновение разума...
Таким образом, растительные формы жизни являются фундаментом любой экологической системы. От чего же зависит количество растительной биомассы в той или иной экологической системе? Для любой экологической системы основными определяющими признаками являются следующие:
а) мощность солнечной радиации (её оптическая часть), падающая на единицу поверхности в единицу времени (при превышении допустимой мощности солнечной радиации, живые организмы гибнут).
б) биологический КПД растительных организмов, т.е., какая часть солнечного света поглощается растениями и используется при синтезе органических соединений.
в) количество разных видов растительных организмов.
г) количество растений одного вида.
Записав всё это в математическом виде, получаем выражение:
s i j
∫ ∫ ∫W(t) Ψ(ij) n(ij) ds di dj = mijp(t) (4)
000
где:
mijp(t) — количество растительной биомассы, синтезируемой в единицу времени всеми растительными организмами на единице поверхности планеты.
Часть растительной биомассы поглощают растительноядные (травоядные) животные. Из этой части, после соответствующего расщепления и преобразования, синтезируется биомасса травоядных животных:
s a b
∫ ∫ ∫mijp(t)Ψ(ab)n(ab)dsdadb=mabp(t) (5)
000
где:
mabp(t) — биомасса травоядных животных, синтезируемая в единицу времени на единице площади.
Плотоядные животные поедают часть травоядных; после соответствующего расщепления и преобразования из этой части синтезируется биомасса плотоядных животных:
s c q
∫ ∫ ∫mabp(t)Ψ(cq)n(ab)dsdcdq=mcqp(t) (6)
00 0
где:
mcqp(t) — биомасса травоядных животных, синтезируемая в единицу времени на единице площади.
Следует отметить, что к травоядным животным относятся все виды, которые поедают как живые, так и мёртвые растительные организмы. Используя введённые обозначения (4), (5), (6) можно записать математическую модель экологической системы в виде:
mijp(t) + mabp(t) + mcqp(t) = constΨ (7)
Как показали практические исследования биологов, только 10% биомассы растений переходит в биомассу травоядных животных, и 10% биомассы травоядных животных преобразуется в биомассу плотоядных животных. Если подставить в это уравнение значения слагаемых и вынести за скобки общие множители, получим это уравнение в несколько другом, более наглядном виде:
s I j
∫∫∫W(s)Ψ(ij)n(ij)dsdidj[1+…+…]=constΨ (8)
000
Из формулы (8) видно, что всё многообразие форм живой природы, её качественный и количественный состав определяется:
а) плотностью потока солнечного света, падающего на единицу поверхности планеты в единицу времени.
б) биологическим КПД растительных организмов, т.е., какая часть солнечного света поглощается и преобразуется в растительную биомассу.
Коэффициент Ψ(ij) неодинаков у разных типов растительных организмов и может принимать значения в интервале:
0 ≤ Ψ(ij) ≤ 1
Самые совершенные типы растительных организмов на Земле имеют биологический КПД равный 0,1 (10%). Таким образом, сложность, многообразие форм и видов конкретной экологической системы определяется в первую очередь двумя параметрами — W(s) и Ψ(ij).
А если учесть, что плотность потока солнечного света, падающего в единицу времени на единицу поверхности изменяется очень медленно и притом постепенно уменьшается (если сравнивать интервал времени с момента возникновения жизни на планете и текущее время), и в течение того же периода времени на смену простой экологической системе приходила более сложная, совершенная, можно сделать следующий вывод:
Биологический КПД является основным параметром, определяющим многообразие форм и видов, образующих любую экологическую систему.
Выражение (8) является основным законом эволюции живой материи. Причём, из этого закона следует закономерность появления разнообразных форм жизни в Космосе на разных планетах (не только белковых). Источником для возникновения жизни может служить не только плотность потока солнечного света W(s), как это произошло на планете Земля, но и любой другой поток материй, что естественно приведёт к появлению других форм жизни.
Многообразие форм жизни — закономерно.
Кроме того, из формулы экологической системы (8) следует вывод о возможности искусственного создания растительных организмов с различными КПД Ψ(ij), большими, чем у покрытосеменных (больше 10%).
Это даёт ключ к управлению эволюцией экологической системы, возможность искусственного создания качественно новых экологических систем, решению многих экологических и других проблем, которые возникли у человечества!
Содержание
Предисловие
Третье Обращение к Человечеству
Глава 1. Образование планеты земля. Синтез форм материй
Глава 2. Возникновение жизни на Земле
Глава 3. Пси-поля в природе и в эволюции разума
Глава 4. Формирование экологической системы планеты Земля
Глава 5. Кругооборот жизни на земле.Многомерность жизни
Глава 6. Эволюция разума, организма и сущности
Глава 7. Эволюционная история человечества
Глава 8. Организм человека. Причины, механизмы появленияи развития заболеваний
Глава 9. Влияние сущности на организм и психику человека
Глава 10. Единство законов микрокосмоса и макрокосмоса Вселенной
Глава 11.Матричное пространство. Образование суперпространств
Глава 12. Система матричных пространств
Приложение 1. Вывод формулы внутривидового саморегулирования
Приложение 2. Вывод формулы экологической системы
Приложение 3. Получение формулы системы матричных пространств
Приложение 4. Практика работы с собственным пси-полем
Приложение 5. Описание рисунков
-----
В своей первой книге автор предлагает читателю новую систему знаний и представлений о законах природы, которые необходимы не только для того, чтобы не разрушать наш дом-планету, но и для понимания каждым думающим человеком, каждым, кто хочет понять и осознать происходящее с ним самим, с людьми, окружающими его дома или на работе. Эта книга для тех, кто стремится проникнуть в тайны природы, понять и осознать чудо зарождения жизни, понять, что такое душа и что происходит с человеком в момент и после смерти. Такие понятия, как душа, сущность, реинкарнация, из понятий мистических «чудесным» образом превращаются в понятия реальные, обусловленные законами эволюции живой материи. Впервые в этой книге даётся объяснение практически всех явлений живой и неживой природы, показано единство законов макро- и микрокосмоса. Автору удалось создать единую теорию поля, объединить в одно целое представления о природе. Книга содержит 182 авторские иллюстрации высокого качества.
Скачать книгу Николая Викторовича Левашова "Последнее обращение к человечеству"
✓Летописи Русов
✓ОБРАЗование
✓Косметика MIRRA
✓Легенда (игра)