3.3. Влияние материальных объектов микрокосмоса на окружающие их пространство |
В зоне деформации микропространства, к которой выполняются необходимые условия для полного слияния семи первичных материй, происходит синтез гибридных форм материй. Причём, гибридные формы материи сами начинают влиять на своё микропространство с обратным знаком. Каждая гибридная форма материи увеличивает мерность окружающего пространства на некоторую величину. Процесс синтеза этих первичных материй будет продолжаться до тех пор, пока деформация мерности микропространства не будет нейтрализована. Гибридные формы материи заполняют собой эти деформации мерности. Представим себе грунтовую дорогу с ямами. Если взять и засыпать эти ямы полностью камнями, поверхность дороги вновь станет ровной, хотя в реальности ямы никуда не исчезли. Просто их заполнили качественно другими твёрдыми материалами. Так и гибридные материи, возникшие в зонах деформации микропространства, качественно отличаясь от первичных материй их создавших, заполняют зоны неоднородности и собой компенсируют искривление пространства. В данном случае, нас интересует гибридная форма материи, возникшая, как результат слияния семи форм первичных материй. Диапазон значений мерности, в пределах которого физически плотное вещество стабильно, т.е. не распадается на первичные материи его образующие, лежит в пределах:
2.87890 < ΔLф.п.в. < 2.89915 (3.3.1)
Самый маленький атом — атом водорода — в своём ядре имеет только один нуклон — протон, атомный вес которого равен одной условной атомной единице. Естественно предположить, что и влияние на свой окружающий микрокосмос атом водорода будет оказывать минимальное. В силу этого, водород будет устойчив во всём диапазоне значений физически плотного вещества (3.3.1). Именно поэтому, водород — самый распространённый элемент во Вселенной. Давайте попытаемся понять, почему водород — самый распространённый элемент во Вселенной? При синтезе атомов, в частности водорода, происходит изменение качественного состояния микропространства вокруг ядра этих атомов. Причём, возникшее дополнительное искривление пространства имеет другой знак по отношению к зоне деформации пространства, в которой произошёл синтез этих атомов. Если считать отрицательной величину деформации пространства, в которой произошёл синтез атомов, тогда дополнительное искривление пространства, вызванное каждым атомом, будет положительной величиной. Таким образом, на первичное искривление пространства накладывается вторичное искривление с противоположным знаком. В результате чего, первичное искривление пространства частично компенсируется. Атом водорода, имеющий в своём ядре только один нуклон — протон — создаёт таким образом минимальное вторичное искривление пространства и поэтому стабилен практически во всём диапазоне. Опасность неустойчивости возникает только при нахождении атомов водорода у границ диапазона стабильности физически плотного вещества. Поэтому, водород имеет спектр устойчивых состояний, практически равный диапазону устойчивости физически плотного вещества (Рис. 3.3.1).
Каждому устойчивому состоянию атома соответствует уровень собственной мерности атома. Если атом имеет уровень собственной мерности близкий к верхней границе диапазона устойчивости физически плотного вещества, то, при поглощении атомом фотона с длинной волны, соизмеримой с размерами атома (при поглощении атомом фотона, электрон атома «переходит» с ближней к ядру орбиты на более удалённую), уровень собственной мерности атома изменяется на величину амплитуды поглощённой атомом волны. Таким образом, в результате поглощения атомом фотона, уровень собственной мерности атома увеличивается. И, если изначально атом находился близко к верхней границе диапазона устойчивости физически плотного вещества, подобное изменение мерности приводит к неустойчивому состоянию атома, и он распадается. Может возникнуть вопрос, каким образом атом водорода в частности или любой другой атом, устойчивый в своём обычном состоянии, становится неустойчивыми и распадается? Вёрнёмся к образу ям на дороге, заполняемых водой во время дождя. Как размеры, так и глубина этих ям всегда будет различной и потребуется разное количество воды или чего-нибудь другого, чтобы заполнить эти ямы до краёв. Поэтому, если возникает незначительное искривление микропространства, возникает синтез только таких атомов, собственное влияние которых на своё микропространство соизмеримо с величиной деформации микропространства в области синтеза данных атомов. На деформацию макропространства накладывается деформация микропространства, только с обратным знаком, и они взаимно уравновешивают друг друга. Минимальное искривление макропространства, при котором возникает синтез физически плотного вещества, соответсвует условиям синтеза водорода. Атом водорода Н оказывает минимальное влияние на своё микропространство и именно поэтому является первейшей формой физически плотного вещества во Вселенной (Рис. 3.3.2).
Атом водорода — это первокирпичик материи нашей Вселенной и именно он послужил строительным материалом, как для звёзд, так и всех других известных атомов, которые возникали в недрах звёзд в результате термоядерных реакций, появляющихся в результате сжатия водородных звёзд — голубых гигантов. Сжатие водородных голубых гигантов происходит вследствие того, что внутри голубого гиганта существует перепад мерности, направленный к центру звезды (Рис. 3.3.3).
В результате этого сжатия, атомы водорода начинают двигаться к центру зоны деформации макропространства и, сталкиваясь друг с другом, излучают волны. При этом электрон каждого излучающего атома водорода переходит с орбиты с большей энергией на орбиту с меньшей. И так продолжается до тех пор, пока электрон не приблизится к ядру-протону настолько близко, что происходит качественное преобразование атома водорода в нейтрон. Существует критическая минимальная орбита для электрона атома водорода. И если электрон, находясь на этой орбите, излучает волну и переходит на орбиту ниже критической, происходят необратимые процессы и водород переходит в новое качественное состояние — нейтрон. В нейтроне расстояние между протоном и электроном настолько малы, что можно сказать что электрон практически упал на протон. При сбросе электрона на орбиту ниже критической, возникает ситуация, когда практически не существует возможности вывести его на более высокую орбиту. Нейтрон, не имеющий электрического заряда, становится строительным материалом для других атомов. Ускоряясь, в результате столкновения с атомами и другими нейтронами, нейтроны достигают таких энергий, когда они в состоянии проникнуть в ядро водорода и создать дейтерий, так называемый, тяжёлый водород. Таким образом возникают условия для термоядерных реакций, в результате которых синтезируется гелий. Аналогичным образом происходит синтез и атомов всех остальных элементов. В результате сжатия звезды наступает момент, когда происходит взрыв, так называемой, сверхновой, и вещество верхних слоёв звезды, состоящее из атомов разных элементов, выбрасывается в окружающее пространство. Кроме этого, следует вспомнить, что, в пределах диапазона устойчивости физически плотного вещества мерность микропространства меняется непрерывно в то время, как вторичное влияние каждого атома на это же пространство имеет конкретную, конечную величину. Эта величина влияния собственно атома может быть очень маленькой, как у водорода, или соизмеримой с диапазоном устойчивости — как у урана и следующих за ним элементов (Рис. 3.3.4). Влияние всех остальных элементов лежит между этими крайностями.
Водород мы называем самым «лёгким» элементом, а трансурановые — самыми «тяжёлыми» (Рис. 3.3.5).
Но, врядли кто-нибудь задумывался, что стоит за этими столь очевидными понятиями. Мы привыкли принимать, как должное, многие природные явления, хотя они несут в себе порой удивительную информацию, обладание которой может помочь разгадать многие загадки природы. Представим, что в воду брошено много шариков разного размера, но одинаковой плотности и самый маленький из них — целое число раз помещается в любом другом. Вследствие этого, вес каждого будет больше веса самого маленького во столько раз, сколько раз он помещается в данном шарике. После того, как все эти шарики упали в воду, они пришли в хаотическое, по отношению друг к другу, движение. Но постепенно, по мере потери ими изначального импульса, они распределятся в воде в определённом порядке. Самый лёгкий шарик будет плавать на поверхности воды или близко к ней, там, где его вес будет нейтрализован давлением воды. Все остальные шарики, в зависимости от их размера, а следовательно и веса, окажутся погружёнными на разные глубины. Любое движение воды будет приводить в движение все эти шарики, но каждый раз, после прекращения движения водных масс, все эти шарики вновь займут «свои» места — вернутся на ту глубину, где их вес нейтрализуется давлением воды. Не правда ли, понятная и знакомая каждому из нас картина. Так вот, самым «лёгким шариком» является водород, а все остальные шарики — атомами других элементов, атомный вес которых — кратный атомному весу атома водорода. Кратный потому, что любое ядро состоит из нуклонов — протонов и нейтронов, вес которых — практически одинаковый.
Так вот, так же, как и водные массы приходят в движение под воздействием ветра или чего-нибудь другого, в пространстве постоянно происходят различные процессы (например, прохождение через пространство разных волн), в результате чего все «плавающие» в пространстве атомы и молекулы почти постоянно находятся в движении. После каждого очередного возмущения мерности пространства атомы возвращаются к своим «равновесным» состояниям. Вследствие этого атомы водорода скапливаются у верхней границы диапазона устойчивости физически плотного вещества. Понимание этого, приближает к осмыслению радиоактивности изотопов «лёгких» и «средней тяжести» элементов. К примеру, при бомбардировке водорода нейтронами, некоторые атомы водорода захватывают один или два нейтрона, в результате чего атомный вес этих атомов увеличивается на одну или две атомные единицы и образуется дейтерий или тритий, имеющие больший, чем водород, атомный вес при таких же электрохимических свойствах. Дейтерий и тритий, имея такой незначительный атомный вес, являются радиоактивными изотопами водорода. Необъяснимое с классической точки зрения явление становится естественным для понимания, если учесть вышесказанное. В принципе, водород устойчив в пределах практически всего диапазона устойчивости физически плотного вещества. Но, при этом, уровень собственной мерности водорода располагается близко к верхней границе диапазона устойчивости. Для того, чтобы понять, что такое уровень собственной мерности, следует вспомнить, что каждый атом влияет на своё микропространство. Это влияние обусловлено тем, что атом занимает собой часть макропространства.
Влияние каждого атома на своё микропространство и макропространство — постоянно и пропорционально атомному весу, другими словами, количеству протонов и нейтронов, образующих атомное ядро: чем большее число нуклонов (протонов и нейтронов) входят в состав ядра атома, тем больше влияние атома на окружающее пространство. Деформация макропространства может быть различной. Атомы, возникающие вследствие синтеза или попавшие в эту деформацию, заполняют её собой. Поэтому, при заполнении одной и той же неоднородности разными атомами, последние (атомы) окажутся в разных качественных условиях. Атом водорода, при своём минимальном влиянии на окружающее пространство, будет устойчив по всей зоне неоднородности в силу того, что степень влияния атома водорода на окружающее пространство значительно меньше величины самой деформации. В то время, как степень влияния на окружающее пространство атомом урана U соизмеримо с максимальной величиной деформации пространства, при которой может существовать физически плотное вещество. Поэтому, условия для синтеза и устойчивого состояния атома урана возможны только при величине деформации, соизмеримой со степенью влияния атома урана на окружающее пространство. А эта величина, как уже говорилось, соизмерима с величиной диапазона устойчивости физически плотного вещества. Поэтому, уровень собственной мерности атома урана будет лежать вблизи нижней границы диапазона устойчивости.
Атом водорода H оказывает минимальное влияние на окружающее пространство и поэтому он будет устойчив практически в пределах всего диапазона устойчивости физически плотного вещества. Другими словами, водород имеет спектр значений собственной мерности, соизмеримый с диапазоном устойчивости физически плотного вещества. Таким образом, уровень собственной мерности представляет собой значение(я) мерности пространства внутри диапазона устойчивости физически плотного вещества, при которых происходит синтез данного атома и при которой он сохраняет устойчивое состояние. Спектр значений уровней собственной мерности водорода означают, что синтез атомов водорода будет происходить, как при деформациях пространства, соизмеримых со степенью влияния атома водорода на окружающее пространство, что близко к верхней границе диапазона устойчивости, так и при деформациях пространства, соизмеримых с величиной диапазона устойчивости физически плотного вещества.
Следует отметить, что каждый атом влияет на окружающее пространство в зависимости от его атомного веса. Но, вне зависимости от того, как сильно он влияет, он частично или полностью заполняет собой деформацию пространства, уменьшая тем самым величину этой деформации. Поэтому, совокупное влияние на пространство двухсот тридцати восьми атомов водорода приблизительно будет равно степени влияния одного атома урана. Причём, заполняя собой и компенсируя деформацию пространства, каждый атом водорода будет уменьшать «глубину» этой деформации и двести тридцать восьмой атом водорода окажется в таких же качественных условиях, как и один атом урана — станет неустойчивым, радиоактивным. Отличие будет только в том, что все эти атомы водорода будут находиться в постоянном движении друг относительно друга и периодически каждый из них окажется в положении неустойчивости и, если в это время через данную точку пространства пройдёт какое-нибудь микроскопическое возмущение мерности пространства, данный атом водорода станет радиоактивным. В то время, как каждый атом урана постоянно находится в неустойчивом состоянии и при микроскопических возмущениях мерности пространства начинает распадаться на более устойчивые атомы.
Таким образом, вне зависимости от того, какой это атом, он становится радиоактивным, если он, по тем или иным причинам, окажется близко к верхней границе диапазона устойчивости физически плотного вещества. В силу того, что в пространстве постоянно присутствуют различные микроскопические колебания мерности, атомы водорода постоянно находятся в движении, при котором они отклоняются от оптимального для них уровня мерности. Но, как и поплавок ушедший под воду всплывает после того, как рыба отпустит наживку, так и атомы водорода (впрочем, как и любые другие атомы) возвращаются к оптимальному уровню собственной мерности (Рис. 3.3.6).
Если во время движения атомов водорода под воздействием возмущений мерности микропространства ядро какого-либо из атомов водорода «захватит» один или два «лишних» нейтрона, то, при возвращении таких изменённых атомов к оптимальному для водорода уровню мерности они «выпадают» из диапазона устойчивости физически плотного вещества (Рис. 3.3.7).
В результате чего, становятся неустойчивыми и распадаются (Рис. 3.3.8). И всё сразу становится на свои места, исчезают противоречия, вместо абсурда открывается великолепная картина микромира в своей первозданной красоте.
Осталось выяснить только маленькое «но»: почему тяжёлый водород возвращается к тому же оптимальному уровню собственной мерности, что и «простой» водород, в результате чего становится неустойчивым и распадается?!
Давайте чуть глубже «заглянем» в ядро атома водорода. Ядро «просто» водорода имеет один нуклон — протон — положительно заряженную частицу, заряд которой нейтрализуется отрицательным зарядом электрона, что обеспечивает устойчивость атома. Вспомним, что ядро содержит практически всю массу атома, в нём содержится физически плотное вещество, представляющее собой гибридную форму материи, возникшую в результате слияния семи первичных материй. Гибридные формы влияют на мерность микропространства с обратным знаком. Вследствие чего, изначальная деформация микропространства нейтрализуется, и восстанавливается баланс — устойчивое состояние пространства. Ядро атома водорода, при своём рождении, создаёт свою микроскопическую деформацию мерности окружающего микропространства такой же природы, что и изначальная. И, если изначальную деформацию считать отрицательной, то физически плотное вещество создаёт положительную деформацию микропространства. В зависимости от того, на каком расстоянии от ядра возникает вызванная протоном деформация микропространства, появляется или атом водорода, или нейтрон.
Дело в том, что нейтрон — электрически нейтральная частица, качественно образована протоном и электроном, расстояние между которыми — на порядок меньше размера атома водорода. Поэтому, столь близко расположенные положительная и отрицательная зоны деформации микропространства полностью компенсируют друг друга, и возникает нейтральная зона микропространства, которая не вступает во взаимодействие ни с какими другими, изолированная от всего и вся. У атома водорода «электронная» зона деформации микропространства несколько отдалена от протона, в результате чего её влияние на протон ядра водорода значительно меньше, в силу чего сила взаимодействия между ними — значительно меньше чем внутри нейтрона, в результате чего, появляются свойства, характерные для атомов. Таким образом, чётко вырисовались отличия между атомом водорода и нейтроном и это различие — только в расстоянии между двумя зонами деформации микропространства разных знаков. Именно расстояние между ними так значительно влияет на их свойства, что мы говорим, в одном случае, об атоме водорода, а в другом — о нейтроне. И опять, пространственные характеристики приводят к качественному скачку проявления материи.
А теперь, вспомним, что «электронная» зона деформации недостаточна для полного слияния семи форм материи и, что условия для слияния возникают только временно, во время прохождения фронта волны через «электронную» зону деформации микропространства. В результате этого, физически плотная материя «рождается», чтобы в следующее мгновение умереть, и так повторяется бесконечное число раз. Во время своей «кратковременной жизни» электрон проявляет свойства вещества, другими словами, влияет на пространство точно так же, как и ядро атома водорода — протон. В момент его распада — «смерти» — подобное влияние исчезает. И, как следствие, атом водорода постоянно совершает микроскопические колебания мерности окружающего микропространства, относительно уровня устойчивого состояния равновесия. В результате периодической материализации электрона, «электронная» минусовая зона деформации микропространства то исчезнет, то вновь появится. Таким образом, различие между атомом водорода и нейтроном определяются только их пространственной структурой, которая оказывает влияние только на их химические свойства, в то время, как природа их влияния на микропространство — практически тождественна. Поэтому, когда атом водорода «захватывает» нейтрон, атом тяжёлого водорода стремится к тому же оптимальному уровню собственной мерности, что и «простой» водород, в то время, как совокупное влияние ядра на окружающее микропространство у тяжёлого водорода в два или три раза (в случае дейтерия или трития, соответственно) больше, чем у простого водорода. И, как следствие, тяжёлый водород выпадает за пределы устойчивости физически плотного вещества. Его ядра оказываются в зоне микропространства, где не может существовать материя, возникшая при слиянии семи первичных материй, происходит распад ядра на материи, его образующие. Что и соответствует радиоактивному распаду.
Может возникнуть вопрос: почему атом водорода, как и все остальные атомы, должен стремиться к оптимальному уровню собственной мерности?! И вообще, что стоит за этим понятием? Очередная комбинация слов, не имеющая физического смысла и чёткого объяснения?! Давайте разберёмся с этим понятием.
Как уже отмечалось, гибридные формы материй своей массой заполняют деформацию пространства, в которой происходит их синтез. Процесс синтеза продолжается до тех пор, пока зона деформации не заполнится полностью, так же, как при засыпании камнями ямы, поверхность грунтовой дороги становится ровной. Гибридные материи нейтрализуют собой зону деформации пространства. А это может означать только одно — они сами влияют на мерность пространства со знаком, обратным знаку деформации пространства, в котором происходил синтез этих гибридных материй. Атомы создают вторичное искривление микропространства. Таким образом, каждый атом изменяет мерность своего микропространства, в то время, как всё остальное окружающее его микропространство сохраняет мерность, которая была до синтеза данного атома. В результате этого, возникает некоторый перепад мерности, направленный от уровня с меньшей мерностью, к уровню с большей. Этот небольшой перепад мерности заставляет атом двигаться к верхней границе диапазона устойчивости физически плотного вещества.
Вспомним, что первичная деформация пространства, в которой происходит синтез гибридных форм, создаёт перепад мерности, направленный от уровня с большей мерностью к уровню с меньшей, что и заставляет свободные первичные материи двигаться внутрь этих зон, где они оказываются в других качественных условиях, при которых происходит синтез гибридных материй. Таким образом, градиент (перепад) мерности, в зоне деформации пространства, имеет один знак, в то время, как созданный при синтезе атома перепад имеет противоположный знак. Вспомним и другой факт: яма на дороге не исчезает, а только заполняется камнями. Поэтому даже после завершения синтеза гибридных материй, перепад мерности остаётся, и это приводит к тому, что первичные материи продолжают «втекать» в зону деформации пространства. Аналогично, как вода реки или ручья, заполнив до краёв озеро, продолжает впадать в него, создаёт течения в нём. При этом, часть воды озера вытесняется и продолжает течь дальше. Так же и первичные материи после завершения процесса синтеза гибридных материй продолжают пронизывать зону деформации, в которой этот синтез происходил. Зона деформации пространства не исчезает, а только заполняется гибридными формами материй. Поэтому, изначальный перепад мерности, хоть и компенсируется гибридными материями, продолжает существовать для свободных первичных материй, так же, как озеро продолжает существовать для воды в него втекающей и после полного заполнения.
Перепад мерности (градиент) всегда направлен от границ к центру зоны деформации пространства, поэтому первичные материи, двигаясь вдоль этого градиента, создают собой направленный поток. Этот направленный поток первичных материй, в зоне перепада мерности и создаёт, так называемое, гравитационное поле. Гравитационное поле всегда принималось, как само собой разумеющееся, очевидное и бездоказательное. Вообще, понятие любого поля вводилось в виде постулата, без каких-либо доказательств и объяснений, что в принципе чревато серьёзными последствиями для развития науки в целом. Без понимания, казалось бы очевидного, невозможно движение науки вперёд. Так вот, перепад мерности пространства в зонах неоднородности, возникших при взрывах сверхновых, создаёт гравитационное поле, гравитацию. Каждый атом, возникающий в результате синтеза семи первичных материй, создаёт вторичное искривление пространства на микроуровне. Возникает перепад мерности, создаваемый атомом, направленный против первоначального, другими словами, каждый атом создаёт антигравитационное поле. В результате этого, атом начинает двигаться к верхней границе диапазона устойчивости и останавливается на балансном уровне мерности.
Давайте разберём, почему атом останавливается на, так называемом, балансном уровне мерности?!
Вспомним, что каждый атом не только создаёт вторичное искривление пространства, но и представляет собой физически плотное вещество, гибридную форму из семи первичных материй, которое качественно отличается от первичных материй. Планетарный перепад мерности формирует направленные потоки первичных материй к центру планеты и каждый атом попадает под их «напор». Возникает «эффект паруса» — первичные материи «давят» на атом, заставляя его двигаться в том же направлении, что и они сами. Поток первичных материй как бы «заставляет» атом двигаться в заданном направлении — к центру зоны деформации. Перепад мерности, создаваемый атомом, направлен от центра зоны деформации к её границам, что создаёт встречный импульс атома. В результате, давление первичных материй на «поверхность» атома частично нейтрализуется антигравитацией, порождённой самим атомом. И в определённой точке эти две силы уравновешивают друг друга, что и соответствует балансному уровню мерности для данного атома. Каждый атом имеет «свой» размер, атомный вес и степень влияния на окружающее микропространство, поэтому для каждого атома существует свой балансный уровень, характерный только для него. Именно поэтому, лёгкие элементы имеют балансный — собственный — уровень мерности, близкий к верхней границе диапазона устойчивости физически плотного вещества, в то время, как тяжёлые элементы — собственные уровни мерности, близкие к нижней границе диапазона устойчивости (3.3.1). И, в случае атома тяжёлого водорода, его собственный уровень мерности близок к верхней границе этого диапазона и даже при незначительных возмущениях мерности, создаваемых волнами пронизывающими микропространство, он (тяжёлый водород) становится радиоактивным, так как, при поглощении волн, собственная мерность атома тяжёлого водорода становится сверхкритической, и атом распадается (LD > 2.89915). Наоборот, уровень собственной мерности трансурановых элементов близок к нижней границе диапазона устойчивости в то время, как влияние ядер трансурановых элементов на свой микрокосмос близко к критическому значению. И достаточно незначительных колебаний мерности микрокосмоса, возникающих в атомах, при поглощении ими волн, чтобы они стали нестабильны и начали распадаться.
Изотопы водорода и трансурановые элементы оказываются в аналогичных условиях и, вследствие этого, природа их поведения — тождественна. Изотопы всех элементов, располагающихся между водородом и ураном, радиоактивны по тем же причинам. Каждый из этих элементов имеет собственный уровень мерности, соответствующий оптимальной устойчивости атома каждого элемента. Первичное искривление пространства, в котором происходит синтез материи и вторичное искривление, возникшее под воздействием ядер атомов, имеющих разные знаки (разные знаки означают наличие перепадов мерности, направленных навстречу друг другу), создают условия, в какой форме материя может быть устойчива в данной точке пространства, соответствующей данному уровню мерности. В результате подобной «сортировки», в зоне неоднородности пространства происходит распределение материи по качественному составу. Именно поэтому планета имеет ядро из тяжёлых элементов, количество которых уменьшается от центра к поверхности. Средней тяжести элементы или комбинация из них и лёгких элементов, образуют кору планеты, граница которой находится на разном расстоянии от центра ядра планеты. И если взять уровень моря за точку отсчёта, то все впадины заполнены водой, которая представляет собой синтез лёгких элементов: кислорода и водорода. Далее идёт атмосфера, образованная газами из лёгких элементов, переходящая в ионосферу (Рис. 3.3.9).
Ионы являются граничной формой физически плотного вещества нашей Вселенной, распад которых сопровождается разными излучениями, которые веществом, в полном смысле этого слова, уже назвать нельзя. Таким образом, возникает равновесие, гармония между непрерывно изменяющимся пространством и материей, имеющей конкретные свойства и качества. Бесконечное сливается, становится тождественно конечному в каком-то ограниченном объёме этого бесконечного. Очередной парадокс, который, в принципе, им не является. И, если с природой электрона всё более-менее понятно, то понятие электрического тока остаётся ещё не освоенной территорией. Так давайте попытаемся понять природу электрического тока.
В классической физике под электрическим током понимается направленное движение электронов от плюса к минусу. Вроде бы, всё предельно просто, но, к сожалению, это — иллюзия. Что такое электрон, классическая физика не объясняет, за исключением того, что электрон объявляется отрицательно заряженной частицей. Но, что такое отрицательно заряженная частица, никто не удосужился объяснить. В то же время, отмечалось, что электрон обладает дуальными (двойственными) свойствами, как частицы, так и волны. Даже в этом определении скрыт ответ. Если какой-то материальный объект обладает свойствами, как волны, так и частицы, то это может означать только одно — он не является ни тем, ни другим. По своей природе, частица и волна, в принципе, не совместимы и не нужно совмещать несовместимое. Что такое электрон мы детально разобрались выше, поэтому перейдём к следующей части объяснения электрического тока. Направленное движение, казалось бы, что может быть проще — движение в заданном направлении. Всё это так, но существует маленькое «но». Электроны вообще не двигаются в проводнике, по крайней мере, то, что понимают под электроном. А если предположить, что они двигаются, то должна быть скорость их передвижения в проводнике.
Давайте вспомним объяснение природы постоянного тока. Электроны в проводнике распределены неравномерно в радиальном направлении, в результате чего возникает радиальный градиент (перепад) электрического поля. Перепад электрического поля индуцирует магнитное поле в перпендикулярном направлении, которое, в свою очередь, индуцирует перпендикулярное электрическое поле и т.д. Но, опять таки, понятия электрического и магнитного полей вводятся в виде постулатов, т.е., принимаются без каких-либо объяснений. Получается интересная ситуация, новые понятия объясняются другими, которые сами были приняты без объяснений и поэтому, подобные объяснения не выдерживают критики. Стоит только вдуматься в значение слов и красивая фраза превращается в бессмыслицу. Но, тем не менее, если закрыть на это глаза и провести рассчёт скорости распространения поверхностного заряда по соответствующим формулам, полученный результат окончательно поставит все точки над «i». Скорость получается несколько миллиметров в секунду. Казалось бы, всё вроде бы прекрасно, но это только кажется. Так как, после замыкания цепи, электрический ток в ней появляется мгновенно, вне зависимости от того, как далеко находится источник постоянного тока, и результаты расчётов становятся лишёнными какого-либо физического смысла. Факты из реальной жизни полностью опровергают теоретические объяснения. И, наконец, что такое «плюс» и «минус»?! Снова никаких объяснений. В результате простого анализа, мы пришли к выводу, что общеупотребляемое в физике понятие электрического тока не имеет под собой никакого обоснования, другими словами, с существующих на данный момент позиций современная физика не может объяснить природу электрического тока. При всём при том, что это — реальное физическое явление.
В чём же дело, какова же, всё-таки, природа этого явления?!
Давайте попытаемся подойти к пониманию этого явления с несколько других позиций. Вспомним, что ядро любого атома влияет на свой микрокосмос. Только степень этого влияния у ядер разных элементов, весьма различна. В случае образования из атомов одного элемента или молекул, состоящих из атомов разных элементов, кристаллических решёток, возникает однородная среда, в которой все атомы имеют одинаковый уровень мерности. Для более глубокого понимания этого явления, рассмотрим механизмы образования молекул из отдельных атомов. При этом, вспомним, что восстановление исходного уровня мерности макрокосмоса происходит по следующим причинам. Шесть сфер из гибридных форм материй, возникшие внутри неоднородности, компенсируют деформацию пространства, возникшую в результате взрыва сверхновой. При этом, гибридные формы материй увеличивают уровень мерности макропространства в пределах объёма, который они занимают. При мерности пространства L=3,00017 все формы материй нашей Вселенной уже никак друг с другом не взаимодействуют. Примечательно, что все излучения, известные современной науке, являются продольно-поперечными волнами, которые возникают, как результат микроскопических колебаний мерности пространства.
3.000095 < Lλ < 3.00017
0 < ΔLλ < 0.000075 (3.3.2)
Скорость распространения этих волн меняется, в зависимости от уровня собственной мерности среды распространения. Когда излучения Солнца и звёзд проникают в пределы атмосферы планеты, скорость их распространения в этой среде уменьшается. Так как собственный уровень мерности атмосферы меньше собственного уровня мерности открытого пространства.
2.899075 < Lλср. < 2.89915
0 < ΔLλср. < 0.000075 (3.3.3)
Другими словами, скорость распространения продольно-поперечных волн зависит от собственного уровня мерности среды распространения. Что обычно выражается коэффициентом преломления среды (nср). Продольно-поперечные волны при своём распространении в пространстве переносят это микроскопическое возмущение мерности ΔLλср. При пронизывании ими разных материальных субстанций, происходит накладывание ΔLλср. на уровень мерности этих веществ или сред. Внутреннее колебание мерности, возникшее, как результат такой интерференции (сложения), является катализатором большинства процессов, происходящих в физически плотной материи. В силу того, что атомы разных элементов имеют разные подуровни мерности, они не могут образовывать новые соединения (Рис. 3.3.10).
При распространении продольно-поперечных волн в среде, микроскопическое возмущение мерности ими вызываемое, нейтрализует различия значений уровней собственной мерности разных атомов. При этом, электронные оболочки этих атомов сливаются в одну, образуя новое химическое соединение, новую молекулу. Атомы можно сравнить с поплавками на поверхности воды. Продольно-поперечные волны поднимают и опускают на своих гребнях «поплавки»-атомы, тем самым, изменяя уровень их собственной мерности и создавая возможность новых соединений. Принципиально важны для реализации синтеза следующие параметры продольно-поперечных волн: амплитуда и длина волны (λ). Если расстояние между атомами соизмеримо с длиной волны, происходит взаимодействие между собственной мерностью этих атомов и мерностью волны. Влияние одной и той же волны на уровни мерности разных атомов — неодинаково. Мерность одних атомов увеличивается, а других — уменьшается или остаётся той же. Именно это и приводит к необходимому для слияния атомов балансу мерностей (Рис. 3.3.11).
Если же длина волны значительно превышает расстояние между атомами, то при этом, различие уровней мерностей атомов сохраняется или изменяется незначительно. Происходит синхронное изменение уровней собственной мерности всех атомов, и изначальное качественное различие уровней мерностей атомов сохраняется. Амплитуда волн определяет величину изменения мерности пространства, вызываемую этими волнами при их распространении в данной среде. Различие уровней мерностей между разными атомами требует различного уровня влияния на них. Именно амплитуда и выполняет эту функцию при распространении волн в среде. Величина расстояния между атомами в жидких и твёрдых средах лежит в диапазоне значений от 10-10 до 10-8 метра. Именно поэтому спектр волн от ультрафиолетовых до инфракрасных поглощается и излучается при химических реакциях в жидких средах. Другими словами, при соединении атомов в новом порядке, происходит выделение или поглощение тепла или видимого света (экзотермические и эндотермические реакции), так как только эти волны отвечают требуемым условиям. Итак, продольно-поперечные волны, от инфракрасных до гамма, являются микроскопическими колебаниями мерности, возникшими при термоядерных и ядерных реакциях. Амплитуда волн, участвующих в химических реакциях, определяется величиной разницы между уровнями мерностей атомов до начала реакции и атомов, возникших в результате этой реакции. И не случайно, излучение происходит порциями (квантами). Каждый квант излучения является результатом единичного процесса преобразования атома. Поэтому, при завершении этого процесса, прекращается и генерация волн. Выброс излучений происходит в миллиардные доли секунды. Соответственно, излучения поглощаются также квантами (порциями).
А теперь, рассмотрим кристаллические решётки. Кристаллические решётки образуются из атомов одного и того же элемента или из одинаковых молекул. Поэтому все атомы, образующие кристаллическую решётку, имеют одинаковый уровень собственной мерности. Причём, для каждой кристаллической решётки уровень собственной мерности будет свой. Возьмём два металла, имеющие различные уровни мерности (Рис. 3.3.12).
Они представляют собой две качественно разные среды, по-разному влияющие на окружающее пространство. Если они никак друг с другом не взаимодействуют, никаких необычных явлений не наблюдается. Но, стоит им только вступить в непосредственное взаимодействие, как появляются качественно новые явления. В зоне стыкования кристаллических решёток с разными уровнями собственной мерности, возникает горизонтальный перепад (градиент) мерности, направленный от кристаллической решётки с большим уровнем собственной мерности к кристаллической решётке с меньшим уровнем собственной мерности. Теперь, поместим между пластинами из этих материалов жидкую среду, насыщенную положительными и отрицательными ионами. В жидкой среде молекулы и ионы не имеют жёсткого положения и находятся в постоянном хаотичном движении, так называемом, броуновском. Поэтому под воздействием горизонтального перепада мерности ионы начинают двигаться упорядочено. Положительно заряженные ионы начинают двигаться к пластине с большим уровнем собственной мерности, в то время, как отрицательно заряженные ионы — к пластине с меньшим уровнем собственной мерности (Рис. 3.3.13).
При этом, происходит перераспределение ионов в жидкой среде, в результате чего, на пластинах происходит накапливание положительных и отрицательных ионов. Положительные ионы, при своих столкновениях с пластиной, захватывают из атомов кристаллической решётки пластины электроны, становясь, при этом, нейтральными атомами, которые начинают оседать на самой пластине, в то время, как в самой пластине возникает недостаток электронов. Причём, «бомбардировке» положительными ионами пластина будет подвергаться постоянно и по всей поверхности. Так как, при всём при этом, перепад мерности между двумя пластинами продолжает сохраняться и ионы из жидкой среды, под воздействием этого перепада, приобретают направленное движение. Хаотический процесс столкновений молекул и ионов жидкой среды между собой, приобретает качественно новый характер. Движение ионов и молекул становится направленным. При этом, поведение положительных и отрицательных ионов будет различным под воздействием существующего перепада мерности между пластинами. Горизонтальный перепад мерности создаёт условия, при которых, положительные ионы должны двигаться против перепада, в то время, как отрицательные ионы — вдоль этого перепада мерности. Положительные ионы вынуждены двигаться «против течения», в то время как отрицательные «по течению». В результате этого скорость движения, а следовательно энергия положительных ионов уменьшается, а отрицательных ионов — увеличивается. Ускоренные подобным образом отрицательные ионы, при столкновении с кристаллической решёткой, теряют избыточные электроны, становясь нейтральными атомами. Кристаллическая решётка, при этом, приобретает дополнительные электроны. И если теперь, соединить между собой эти две пластины с разными уровнями собственной мерности посредством провода из совместимого с ними материала, то в последнем (проводе) возникнет, так называемый, постоянный электрический ток — направленное движение электронов от плюса к минусу, где плюс — пластина, имеющая больший уровень собственной мерности, а минус — пластина имеющая меньший уровень собственной мерности. И если продолжить данный анализ, то перепад потенциалов между пластинами есть ни что иное, как перепад уровней собственной мерности кристаллических решёток этих пластин. В результате анализа этого процесса, мы пришли к пониманию природы постоянного тока.
Для понимания природы движения электронов в проводнике, необходимо чётко определиться с природой магнитного B и электрического E полей. Природа гравитационного поля любого материального объекта определяется перепадом мерности в зоне неоднородности, в которой произошёл процесс образования данного материального объекта. И в случае образования планеты, изначальной причиной возникновения подобного искривления пространства послужил взрыв сверхновой звезды. Перепад мерности направлен от краёв зоны неоднородности пространства к её центру, чем и объясняется направленность гравитационного поля к центру планеты или любого другого материального объекта. В силу того, что деформация пространства по-разному проявляется внутри зоны неоднородности, происходит синтез атомов разных элементов и, когда данный процесс происходит в масштабе всей планеты, происходит распределение вещества по принципу уровня собственной мерности. Что означает распределение вещества планеты по зонам, где данное вещество максимально стабильно. Это не означает, что атомы с отличными от оптимального значениями собственной мерности не могут синтезироваться в пределах данного объёма с конкретным значением мерности пространства. Это означает только одно, что атомы, имеющие уровень собственной мерности выше уровня мерности объёма пространства в котором произошёл этот синтез, становятся неустойчивыми и вновь распадаются на первичные материи, из которых они сформировались. И чем больше разница между уровнем собственной мерности образовавшегося атома и уровнем мерности пространства, в котором этот синтез произошёл, тем быстрей произойдёт распад этого атома. Именно поэтому происходит естественное перераспределение атомов, а следовательно и вещества внутри зоны неоднородности планеты. Именно поэтому происходит формирование поверхности планеты в том виде, к которому мы привыкли с самого рождения и воспринимаем, как должное. Необходимо иметь в виду, что любой атом имеет некоторый диапазон, в пределах которого он сохраняет свою устойчивость, а это означает, что вещество, образованное из этих атомов, тоже будет устойчиво в пределах этого диапазона. Твёрдая поверхность планеты просто повторяет форму зоны неоднородности пространства, в пределах которой, твёрдое вещество устойчиво, океаны, моря заполняют впадины, и атмосфера окружает всё это. Таким образом атмосфера располагается в верхней границе диапазона устойчивости физически плотного вещества, в то время, как собственно планета, находится в средней и нижней части этого диапазона...
А теперь, давайте вернёмся на уровень микромира и попытаемся понять природу магнитного и электрического полей. Рассмотрим кристаллическую решётку, образованную атомами одного и того же элемента или атомами нескольких элементов (Рис. 3.3.14).
В твёрдом веществе соседние атомы смыкаются своими электронными оболочками и образуют жёсткую систему, а это означает, что искривления микропространства, вызванные ядром одного атома, смыкаются с искривлениями микропространства соседнего и т.д. и образуют между собой единую систему искривления микропространства для всех атомов, сомкнувшихся между собой и образующих, так называемые, домены. «Связанные» подобным образом, атомы создают единую систему, состоящую из сотен тысяч миллионов атомов. Все атомы, входящие в эту систему, имеют одинаковый уровень собственной мерности, который, в большинстве случаев, отличается от уровня мерности микропространства, в котором находится эта система атомов. В результате, возникает перепад мерности, направленный против перепада мерности макропространства. Формируется зона взаимодействия между микропространством и макропространством. Встречный перепад мерности подобных систем атомов приводит к компенсации деформации мерности макропространства, в котором происходит синтез физически плотного вещества. При завершении процесса синтеза вещества, в зоне деформации мерности макропространства происходит взаимная нейтрализация — деформация мерности макропространства нейтрализуется встречными деформациями микропространства. Причём, деформация мерности макропространства в физике получило название гравитационного поля, в то время, как встречная деформация микропространства, созданная системой из атомов доменов создаёт, так называемое, магнитное поле домена, на уровне одного домена и магнитное поле планеты, на уровне планеты.
Магнитное поле планеты возникает, как совокупность магнитных полей всех доменов, существующих в физически плотном веществе планеты в целом. Совокупное магнитное поле планеты — на порядки меньше гравитационного поля планеты только по одной простой причине — мириады микроскопических магнитных полей доменов всей планеты ориентированны хаотично друг относительно друга и только незначительная их часть сориентированы параллельно относительно друг друга и сохраняют свою намагниченность, создавая магнитное поле планеты. Причём, домены образованные разными атомами, обладают и разной степенью намагничниченности. Намагниченность определяется способностью данного домена сохранять определённую направленность магнитного поля домена и в физике определяется площадью петли гистерезиса. Максимально свойства намагничивания проявляются у железа, сонастроенность доменов которого в масштабе планеты и формирует в основном магнитное поле планеты. Именно по этой причине аномальные залежи железосодержащих руд создают магнитные аномалии — локальные возмущения магнитного поля планеты в пределах данных аномалий.
Теперь, давайте разберёмся, какое влияние магнитное поле — встречный перепад мерности пространства — оказывает на сами атомы, его порождающие. При наличии магнитного поля, электроны атомов становятся более неустойчивыми, что в значительной степени увеличивает возможность их перехода не только на высшие орбиты одного и того же атома, но и возможность полного распада электрона у одного атома и синтез его у другого. Аналогичные процессы происходят, при поглощении атомом волн; отличие заключается лишь в том, что поглощение волн фотонов происходит каждым атомом в отдельности, в то время, как, под воздействием магнитного поля в возбуждённом состоянии одновременно оказываются миллиарды атомов одновременно, без какого-либо существенного изменения их агрегатного состояния (Рис. 3.3.15).
При наличии продольного перепада мерности, называемого постоянным электрическим полем, внешние электроны атомов, ставшие неустойчивыми под воздействием поперечного перепада мерности, называемого постоянным магнитным полем, начинают распадаться на материи их образующие и, под воздействием продольного перепада мерности, начинают двигаться вдоль кристаллической решётки от большего уровня мерности, называемого плюсом, к меньшему уровню мерности, называемого минусом (Рис. 3.3.16).
Продольный поток первичных материй, высвободившихся при распаде внешних электронов одних атомов, попадая в расположение других атомов с меньшим уровнем собственной мерности, вызывает у этих атомов синтез электронов. Другими словами, электроны «исчезают» у одних атомов и «появляются» у других. Причём, это происходит одновременно с миллионами атомов одновременно и в определённом направлении. В так называемом, проводнике возникает постоянный электрический ток — направленное движение электронов от плюса к минусу. Только, в предложенном варианте объяснения, становится предельно ясно, что такое направленное движение, что такое «плюс» и «минус» и, наконец, что такое «электрон». Все эти понятия никогда не объяснялись и принимались, как должное. Только, чтобы быть предельно точным, следует говорить не о «направленном движении электронов от плюса к минусу», а о направленном перераспределении электронов вдоль проводника.
Как стало ясно из вышеизложенного объяснения, электроны не движутся вдоль проводника, они исчезают в одном месте, где уровень собственной мерности атомов становиться критическим для существования внешних электронов и образуются у атомов, у которых выполняются необходимые для этого условия. Происходит дематерилизация электронов в одном месте и материализация их в другом. Подобный процесс происходит в природе постоянно, хаотично и поэтому становится наблюдаемым только в случае управления этим процессом, что и осуществляется при искусственном создании направленного перепада мерности вдоль проводника. Хотелось бы отметить, что причинами проявления, как магнитного поля, так и электрического, являются перепады мерности (градиенты мерности) пространства, которые принципиально не отличаются друг от друга. Как в одном случае, так и в другом это перепад мерности между двумя точками пространства, имеющими, по той или иной причине, разные уровни собственной мерности. Различие в проявлении этих перепадов обусловлено только их пространственной ориентировкой по отношению к кристаллической решётке. Взаимоперпендикулярность двух перепадов мерности относительно, так называемой, оптической оси кристалла, приводит к качественному отличию реакции каждого атома на эти перепады мерности при полной тождественности природы самих перепадов. Анизотропность качественной структуры, как макропространства, так и микропространства приводит к качественно другим реакциям материи, заполняющей эти пространства, как на уровне макропространства, так и на уровне микропространства.
Понимание природы постоянного магнитного и электрического полей и природы их влияния на качественное состояние физически плотной материи позволяет понять и природу переменного электромагнитного поля. Переменное магнитное поле влияет на один и тот же атом по-разному, в разных фазах своего качественного состояния. При нулевой напряжённости переменного магнитного поля, естественно, влияние на качественное состояние атомов кристаллической решётки равно нулю. При прохождении через кристаллическую решётку условно положительной фазы напряжённости переменного магнитного поля, каждый атом начинает терять свои внешние электроны вследствие того, что дополнительное внешнее воздействие перепада мерности влияет на качественное состояние электронных оболочек атомов, не влияя существенно на качественное состояние атомных ядер. В результате этого, некоторые внешние электроны становятся неустойчивыми и распадаются на материи, их образующие. При прохождении условно отрицательной фазы напряжённости переменного магнитного поля наоборот создаются условия для синтеза электронов в зонах деформации микропространства, созданных под воздействием атомных ядер. Поэтому, при прохождении волны переменного магнитного поля через кристаллическую решётку возникает любопытная картина. Если у данного атома или атомов под воздействием магнитного поля внешние электроны стали неустойчивыми и распались на материи их образующие, то у впереди лежащих по оптической оси атома или атомов, та же самая волна создаёт благоприятные условия для синтеза электронов (Рис. 3.3.17).
Это создаёт перепад мерности (электрическое поле), смещённый по фазе на π/2 у расположенных впереди по оптической оси атомов, перпендикулярно переменному магнитному полю, вследствие чего, у этих атомов происходит синтез дополнительных электронов (Рис. 3.3.18).
Дополнительно синтезированные электроны, в свою очередь, создают перпендикулярно электрическому полю смещённый по фазе на π/2 перепад мерности (магнитное поле). И, как следствие всего этого, по проводнику происходит распространение переменного электрического тока вдоль оптической оси (Рис. 3.3.19).
По аналогичному принципу в пространстве распространяются электромагнитные волны.
Таким образом, переменное магнитное поле порождает в проводнике переменный электрический ток, который, в свою очередь, порождает переменное магнитное поле в том же проводнике. При наличии вблизи одного проводника с переменным магнитным полем другого, в последнем возникает так называемый индуцированный электрический ток. И, как следствие, появилась возможность создать генератор электрического тока, в котором вращательное движение турбины преобразуется в переменный электрический ток. Наложение на конкретное микропространство, с конкретными свойствами и качествами внешнего воздействия, в виде перепада (градиента) мерности приводит к тому, что свойства и качества микропространства в зоне наложения изменяются. В силу того, что пространство, как на макроуровне, так и микроуровне — анизотропно, т.е., свойства и качества пространства не одинаковы в разных направлениях, дополнительные внешние перепады мерности, в зависимости от того, в каком из направлений пространства они проявляются, будут вызывать различные реакции физически плотного вещества, заполняющего это пространство. При одной и той же природе перепада мерности, именно анизотропность пространства приводит к тому, что реакция физически плотной материи зависит от того, в каком из пространственных направлений проявляется этот перепад. Именно поэтому природа магнитного и электрического полей — тождественна, как ни парадоксально это звучит. Различие их свойств и качеств определяется именно их пространственными характеристиками. Именно тождественность природы магнитного и электрического полей и создаёт возможность их взаимодействия и взаимоиндуцирования.
Содержание
От автора
Предисловие
Глава 1. Аналитический обзор
1.1. Значимость онтологии физических процессов для философской и научной мысли человечества
1.2. Резюме
Глава 2. Неоднородность пространства
2.1. Постановка вопроса
2.2. Качественная структура пространства
2.3. Система матричных пространств
2.4. Природа звёзд и «чёрных дыр»
2.5. Природа образования планетарных систем
2.6. Резюме
Глава 3. Неоднородность пространства и качественная структура физически плотного вещества
3.1. Постановка вопроса
3.2. Качественная структура микропространства
3.3. Влияние материальных объектов микрокосмоса на окружающие их пространство на окружающие их пространство
3.4. Резюме
Глава 4. Необходимые и достаточные условия возникновения жизни во Вселенной
4.1. Постановка вопроса
4.2. Условия зарождения жизни на планетах
4.3. Качественные особенности органических молекул и их роль при зарождении жизни молекул и их роль при зарождении жизни
4.4. Резюме
Список литературы
Описание рисунков
-----
Скачать книгу Николай Викторович Левашов "Неоднородная вселенная"
✓Летописи Русов
✓ОБРАЗование
✓Косметика MIRRA
✓Легенда (игра)