Информация подобранная в данном разделе НЕ относится к игре Двар: Легенда - Наследие Драконов и кому-то из вас поначалу может показаться не обычной, странной, противоречивой, сомнительной... Согласен - это не просто взглянуть на мир сбросив оковы, которые навязали нам чуть ли не с младенчества, увидеть окружающий мир с точки зрения отличающейся от общепринятой, задуматься о происходящем вокруг и начать искать, мыслить... На даже если хоть для одного и тех кто заглянул в данный раздел информация станет отправной точкой в поиске САМО-стоятельного пути развития, то все это создавалось не зря...  Всем добра ))

Описание рисунков

Неоднородная вселеннаяРис. 2.2.1. Последовательное изменение мерности на одну и ту же величину ΔL является квантованием матричного пространства и выражается коэффициентом квантованияγi, который и есть тот эталон, по которому отбираются «кубики» для создания новой «картинки». Таким образом, как и из разного количества одинакового размера кубиков можно сложить разные картинки, так и из однотипных форм материй в матричном пространстве образуются пространства-вселенные. Эти пространства-вселенные образуют в матричном пространстве единую систему, как слоёный пирог, каждый слой которого качественно отличается от другого. При этом, каждый соседний слой этого пирога имеет в своей «мозаике» на один «кубик» больше или меньше. Все эти слои находятся в постоянном движении и взаимодействии между собой.

 

Неоднородная вселеннаяРис. 2.2.2. В результате искривления пространства, вызванного теми или иными причинами, возникают зоны смыкания между соседними пространствами-вселенными. Если, например, смыкается пространство-вселенная с меньшей собственной мерностью Li с пространством-вселенной с большей Li+1, то, в результате этого, в зоне смыкания рождается звезда Lа для пространства-вселенной с меньшим уровнем собственной мерности Li. Аналогично, смыкание с пространством-вселенной с меньшим уровнем собственной мерности Li-1 приводит к появлению «чёрной дыры» — Lf в пространстве-вселенной с большим уровнем собственной мерности Li.

Через, так называемые, положительные зоны смыкания (звёзды) в пространство-вселенную попадает материя из пространства-вселенной с более высоким уровнем мерности, а через отрицательные зоны смыкания («чёрные дыры») материя из пространства-вселенной попадает в пространство-вселенную с меньшим уровнем мерности. Каждое пространство сохраняется в устойчивом состоянии при наличии баланса между объёмами «втекающей» и «вытекающей» материи.

 

Неоднородная вселеннаяРис. 2.3.1. Смыкание двух матричных пространств, имеющих разные коэффициенты квантования мерности. В зоне смыкания матричных пространств с разными коэффициентами квантования пространства происходит распад материй обоих типов на первичные материи двух типов. Первичные материи обоих типов возвращаются в свободное (несвязанное) состояние. Открытие качественного барьера между соседними матричными пространствами приводит к тому, что в зону смыкания устремляются первичные материи всех типов и начинают накапливаться в ней.

L'1 — мерность первого матричного пространства.

L'2 — мерность второго матричного пространства.

L'12 — мерность зоны смыкания матричных пространств.

ΔL1 — диапазон колебания мерности первого матричного пространства.

ΔL2 — диапазон колебания мерности второго матричного пространства.

 

Неоднородная вселеннаяРис. 2.3.2. Выброс материй через зону смыкания матричных пространств при супервзрыве, когда зона смыкания не может пропустить через себя всей массы движущейся материи. Накопление первичных материй происходит, как следствие распада гибридных материй разных матричных пространств на материи их образующие. Высвобождённые первичные материи начинают двигаться oт эпицентра взрыва во всех пространственных направлениях. При этом, следует помнить, что пространство — неоднородно в разных направлениях, т.е., имеет разные свойства и качества. Поэтому, материя распределяется в пространстве неоднородно.

Обозначения — те же.

 

Неоднородная вселеннаяРис. 2.3.3. При взрыве, происходит возмущение мерности окружающего зону смыкания пространства, образуются зоны неоднородности мерности, в которых начинает оседать материя, выброшенная этим взрывом. Происходят процессы, аналогичные взрыву сверхновой звезды, только на другом качественном уровне. Разница — только в масштабах. В одном случае рождаются планетарные системы, а в другом — вселенные. В последнем случае, деформация при взрыве слоёв тождественной мерности приводит к смыканию их между собой и рождению галактик. Обозначения — те же.

 

Неоднородная вселеннаяРис. 2.3.4. Образование метавселенных в зонах неоднородности мерности пространства, возникших при супервзрыве.

1. Зона, где нет условий для слияния материй.

2. Зона, где могут слиться две формы материй.

3. Зона, где могут слиться три формы материй.

4. Зона, где могут слиться четыре формы материй.

5. Зона, где могут слиться пять форм материй.

6. Зона, где могут слиться шесть форм материй.

7. Зона, где могут слиться семь форм материй.

8. Зона, где могут слиться восемь форм материй.

9. Зона, где могут слиться девять форм материй.

10. Зона смыкания матричных пространств.

11. Метавселенные.

12. Зоны деформации мерности.

 

Неоднородная вселеннаяРис. 2.3.5. Внутри каждой зоны неоднородности мерность пространства меняется непрерывно от центра зоны неоднородности к её краям. В результате чего, материя распределяется неравномерно, создавая дискретные слои, отличающиеся качественным и количественным составом первичных материй их образующих. Происходит, так называемое, квантование первичных материй по пространству. При котором первичные материи, каждая из которых имеет свои свойства и качества, взаимодействуют с пространством только там, где свойства пространства тождественны со свойствами и качествами первичных материй. Квантование пространства по первичным материям приводит к появлению системы пространств-вселенных, которые качественно неоднородны внутри зоны неоднородности в силу того, что зона неоднородности, в которой они возникли, неоднородна в разных пространственных направлениях.

1. Зона неоднородности пространства.

2. Пространства-вселенные, которые образуются внутри единичной зоны неоднородности пространства.

 

Неоднородная вселеннаяРис. 2.3.6. Суперпространство первого порядка. В силу того, что при супервзрыве происходит деформация пространства, во всех пространственных направлениях возникают системы пространств-вселенных, которые отличаются друг от друга числом первичных материй их образующих. Причём, перепады мерности пространства в разных пространственных направлениях внутри зоны неоднородности столь существенны, что возникает квантование пространства по нескольким пространственным направлениям одновременно. При подобном многомерном квантовании пространства возникают системы пространств-вселенных (метавселенные), которые имеют жёсткое неизменное по отношению к друг другу пространственное положение, как имеют свои жёсткие разрешённые орбиты электроны вокруг ядра. В результате чего, метавселенные создают единую устойчивую систему.

1. Зона смыкания матричных пространств.

2. Метавселенные.

 

Неоднородная вселеннаяРис. 2.3.7. Суперпространство второго порядка. Во время супервзрыва, возникают волнообразные деформации пространства, кругами, расходящиеся от центра супервзрыва. Супервзрыв вызывает настолько мощные кольцеобразные волны деформации макропространства, что они распространяются на огромные расстояния. Причём, чем сильнее взрыв, тем большую деформацию макропространства вызывают волны, им создаваемые. Со временем пространство в зоне супервзрыва возвращается к равновесному состоянию. Этот процесс сопровождается постепенным уменьшением амплитуд волн деформации пространства от центра. Поэтому, чем дальше от эпицентра супервзрыва, тем глубина зон деформации пространства будет больше. А это означает, что чем дальше от эпицентра супервзрыва, тем большее число первичных материй сливаются друг с другом, образуя системы метавселенных.

1. Метавселенные, образованные слиянием десяти форм материй.

2. Суперпространства первого порядка.

 

Неоднородная вселеннаяРис. 2.3.8. Суперпространство третьего порядка. Обычно, в макропространстве происходит множество супервзрывов, поэтому волны деформации макропространства одних накладываются на аналогичные волны возмущения макропространства других. В результате, возникает суперпозиция волн деформации макропространства, которые образуют комбинированные пространственные системы. Качественная структура этих пространственных систем зависит от того, сколько супервзрывов произошло в данной области макропространства и на каком расстоянии друг от друга находятся их эпицентры.

1. Метавселенные, образованные слиянием одиннадцати форм материй.

2. Суперпространства второго порядка.

 

Неоднородная вселеннаяРис.2.3.9. Суперпространство четвёртого порядка. Возмущение мерности макропространства, вызванное каждым супервзрывом, распространяется кругами от эпицентра. Чем дальше от эпицентра, тем более сильную деформацию макропространства создаёт волна возмущения мерности, создаваемая супервзрывом. А это означает, что чем дальше от эпицентра — тем большее число первичных материй могут сливаться друг с другом в зонах неоднородностей. Чем больше первичных материй сливаются вместе, образуя гибридную материю, тем более инерционной, тем более устойчивой к внешним воздействиям она становится. Кроме того, чем дальше от эпицентра супервзрыва, тем большее число возмущений мерности макропространства от других супервзрывов, накладываются на возмущение созданное данным супервзрывом.

1. Метавселенные, образованные слиянием двенадцати форм материй.

 

Неоднородная вселеннаяРис. 2.3.10. Суперпространство пятого порядка. В силу того, что матричное пространство неоднородно изначально, возмущение мерности, вызываемое каждым супервзрывом, распространяется неравномерно по разным пространственным направлениям макропространства. Поэтому синтез гибридных материй происходит только вдоль некоторых пространственных направлений матричного пространства.

1. Центральная зона смыкания матричных пространств.

2. Метавселенные, образованные слиянием тринадцати форм материй.

3. Метавселенные, образованные слиянием двенадцати форм материй.

4. Метавселенные, образованные слиянием одиннадцати форм материй.

5. Метавселенные, образованные слиянием десяти форм материй.

6. Метавселенные, образованные слиянием девяти форм материй.

7. Метавселенные, образованные слиянием восьми форм материй.

8. Метавселенные, образованные слиянием семи форм материй.

9. Метавселенные, образованные слиянием шести форм материй.

10. Метавселенные, образованные слиянием пяти форм материй.

11. Метавселенные, образованные слиянием четырёх форм материй.

12. Метавселенные, образованные слиянием трёх форм материй.

13. Метавселенные, образованные слиянием двух форм материй.

14. Концевая зона смыкания матричных пространств.

 

Неоднородная вселеннаяРис. 2.3.11. Шестилучевик. Следует иметь в виду, что гибридные материи, возникающие в результате синтеза из первичных материй, влияют на матричное пространство, в котором они находятся, и наступает момент, когда вторичное влияние гибридных материй достигает критической величины, в результате чего происходит «продавливание» одного матричного пространства в другое. В результате этого в одном матричном пространстве возникает супераналог «чёрной дыры», а в другом — супераналог звезды. Таким образом, в данном матричном пространстве системы пространств имеют вполне конечные размеры. Коэффициент квантования данного матричного пространства определяет тип первичных материй, из которых, в этом матричном пространстве, происходит формирование пространственных систем. Гибридные материи, которые возникают в зонах деформации вследствие супервзрывов, для каждого конкретного матричного пространства имеют конечное максимальное число первичных материй их образующих. Вторичное вырождение мерности пространства ими создаваемое, полностью нейтрализует первичную деформацию макропространства.

 

Неоднородная вселеннаяРис. 2.3.12. Антишестилучевик. Во время супервзрывов возникают кольцевые волны деформации макропространства. Эти продольные волны деформируют пространство, как «вверх», так и «вниз». Это явление возникает в силу того, что матричное пространство само по себе неоднородно. Существуют перепады (градиенты) мерности «сверху» «вниз» и на «восток» и на «запад». Поэтому, когда на неоднородное пространство накладывается неоднородная деформация матричного пространства, возникающая при супервзрыве, происходит формирование двух типов зон деформации матричного пространства. Одна зона синтеза гибридных материй представляет собой «яму», другая — «бугор». Внутри «ям» формируются шестилучевики, а внутри «бугров» — антишестилучевики. Отличие первых от вторых заключается в том, что в последних возникают суперпространства с максимальным числом первичных материй во внешних объёмах, а с минимальным — во внутреннем. Условно можно сказать, что в одном случае пространства имеют положительный, а в другом — отрицательный спины.

 

Неоднородная вселеннаяРис.2.4.1. Возникновение звезды, при смыкании пространства-вселенной нашей мерности с пространством-вселенной большей мерности. Возмущения пространства приводят к тому, что слои тождественной мерности пространства в некоторых зонах смыкаются друг с другом. При смыкании слоя пространства-вселенной одной тождественной мерности со слоем большей тождественной мерности, в зоне смыкания формируется звезда. При этом, материи начинают перетекать из пространства-вселенной с большей мерностью в пространство-вселенную с меньшей. Причина перетекания в данном направлении заключается в том, что два соседних слоя тождественной мерностью отличаются друг от друга на одну первичную материю. В зоне смыкания происходит распад материи уровня большей мерности и синтез материи меньшей мерности.

L6, L7, L8 — мерности пространств-вселенных, образованных слиянием шести, семи и восьми форм материй.

Lа — мерность звезды.

 

Неоднородная вселеннаяРис. 2.4.2. Возникновение «чёрной дыры», при смыкании пространства-вселенной нашей мерности, с пространством-вселенной меньшей мерности. При смыкании слоя пространства-вселенной одной тождественной мерности со слоем меньшей тождественной мерности, в зоне смыкания формируется «чёрная дыра». При этом, материи начинают перетекать из пространства-вселенной с большей мерностью в пространство-вселенную с меньшей. Причина перетекания в данном направлении заключается в том, что два соседних слоя с тождественной мерностью отличаются друг от друга на одну первичную материю. В зоне смыкания происходит распад материи уровня большей мерности и синтез материи меньшей мерности. «Чёрная дыра» практически представляет собой окно в параллельную вселенную.

L6, L7, L8 — мерности пространств-вселенных, образованных слиянием шести, семи и восьми форм материй.

Lf — мерность «чёрной дыры».

 

Неоднородная вселеннаяРис. 2.4.3. В каждое пространство-вселенную материя притекает через звёзды и вытекает через «чёрные дыры». Таким образом, осуществляется баланс материи в пространстве. Через зоны смыкания между слоями пространства происходит перераспределение материи и именно благодаря этому возникают условия для зарождения жизни. Вещество слоя с большим уровнем тождественной мерности распадается на первичные материи, и происходит синтез вещества слоя с меньшим уровнем мерности. «Лишняя» первичная материя, при этом, высвобождается из плена. Вновь образовавшееся вещество, при попадании в «чёрные дыры» распадается на материи его образующие и происходит синтез вещества слоя с меньшим уровнем мерности и т.д.

L6, L7, L8 — мерности пространств-вселенных, образованных слиянием шести, семи и восьми форм материй.

Lа, Lf — звезда и «чёрная дыра»

 

Неоднородная вселеннаяРис.2.4.4. Нейтронная звезда. В процессе старения звезды доля лёгких элементов уменьшается при росте доли тяжёлых. В итоге, степень влияния звезды на свой макрокосмос увеличивается, и происходит деформация слоя тождественной мерности в сфере влияния звезды. Если изначальный размер звезды был меньше десяти солнечных радиусов, то при гибели звезды образуется, так называемая, нейтронная звезда. И, хотя нейтронная звезда и не «открывает» дверь в другой слой тождественной мерности, но, тем не менее, оказывает значительное влияние на качественное состояние «своего» слоя тождественной мерности.

L6, L7, L8 — мерности пространств-вселенных, образованных слиянием шести, семи и восьми форм материй.

Lс — нейтронная звезда.

 

Неоднородная вселеннаяРис. 2.4.5. «Чёрная дыра». Если изначальный радиус звезды был больше десяти солнечных, то, при гибели такой звезды, образуется чёрная дыра. Масса нейтронного вещества настолько велика, что продавливает матричное пространство до следующего, нижележащего пространства-вселенной. В нижнем слое-вселенной загорается новая звезда. Через эту своеобразную дверь, материя из одного пространства-вселенной начинает перетекать в нижележащее, полностью распадаясь на первичные материи её образующие. Умирая, материя одного типа порождает материю другого типа.

L6, L7, L8 — мерности пространств-вселенных, образованных слиянием шести, семи и восьми форм материй.

Lf — «чёрная дыра».

 

Неоднородная вселеннаяРис. 2.5.1. Каждая звезда «живёт» миллиарды лет, после чего она «умирает». В течение этих миллиардов лет, вещество из пространства-вселенной с большей мерностью L8, через зону смыкания попадает в пространство-вселенную с меньшей мерностью L7. При этом, это вещество становится неустойчивым и распадается на первичные материи его образующие. Семь первичных материй сливаются вновь, образуя физически плотное вещeство пространства-вселенной L7. В зоне смыкания такой уровень мерности, что происходит синтез атомов тех элементов, собственный уровень мерности которых позволяет им сохранить свою устойчивость.

В верхней зоне устойчивости физически плотного вещества «находятся» только, так называемые, лёгкие элементы такие, как водород (H) и гелий (He). Поэтому в зоне смыкания происходит синтез этих элементов. И не случайно большая часть вещества нашей Вселенной — водород. В зоне смыкания происходит активный процесс синтеза водорода, массы которого и составляют основу звёзд. Так рождаются звёзды, так называемые, голубые гиганты. Изначальная плотность «новорождённых» очень мала, но, в силу того, что зона смыкания неоднородна по мерности, возникает перепад (градиент) мерности в направлении к центру. В результате этого, молекулы водорода начинают двигаться к центру зоны смыкания. Начинается процесс сжатия звезды, в ходе которого, плотность звёздного вещества начинает стремительно расти.

По мере роста плотности звёздного вещества, уменьшается объём занимаемый звездой и увеличивается степень влияния массы звезды, как на уровень мерности зоны смыкания, так и на атомном уровне. Таким образом, собственный уровень мерности звезды начинает уменьшаться, а внутри самой звезды начинаются процессы синтеза новых, более тяжёлых элементов. Возникает, так называемая, термоядерная реакция и звезда начинает излучать целый спектр волн, как побочный эффект синтеза элементов. Следует отметить, что именно благодаря этому «побочному эффекту» возникают условия для зарождения жизни.

В зоне смыкания параллельно происходят два процесса: синтез водорода при распаде вещества пространства-вселенной с более высоким уровнем собственной мерности (вещество, образованное синтезом восьми форм первичных материй) и синтез в ходе термоядерных реакций из водорода более тяжёлых элементов. В результате этих процессов звезда уменьшает свой объём и, как следствие увеличения в массе доли более тяжёлых, чем водород элементов, уменьшается и уровень собственной мерности звезды. Что, в свою очередь, уменьшает зону смыкания. Другими словами, «рождённая» другим пространством-вселенной звезда, для нашего пространства-вселенной, постепенно отделяется от своей «матери».

Не правда ли, получается любопытная аналогия с развитием эмбриона внутри матки, когда, «сотканный» из крови и плоти матери плод, покидает лоно матери и начинает самостоятельную жизнь, так и звезда, «рождённая» пространством-вселенной покидает «лоно матери», когда её уровень собственной мерности уменьшается, как следствие увеличения степени влияния на окружающее пространство. Отделившись от «материнского» пространства-вселенной, звезда начинает свою собственную жизнь — жизнь, которая продолжается миллиарды лет, по истечении которых, она «умирает». Правда, звёзды, в свою очередь, успевают «родить» планетарные системы, на которых имеет шанс появиться жизнь.

L6, L7, L8 — мерности пространств-вселенных, образованных слиянием шести, семи и восьми форм материй.

Lс — звезда.

 

Неоднородная вселеннаяРис. 2.5.2. В процессе сжатия звезды, нарушается баланс между излучающей поверхностью и излучающим объёмом. В результате чего первичные материи скапливаются внутри звезды. Накопление первичных материй, в конечном итоге, приводит к так называемому взрыву сверхновой. Взрыв сверхновой порождает продольные колебания мерности пространства вокруг звезды. Выброшенные взрывом сверхновой поверхностные слои звезды, которые, кстати, состоят из наиболее лёгких элементов, попадают в искривления пространства, созданные продольными колебаниями мерности, возникшими при этом взрыве. В этих зонах искривления пространства, из первичных материй происходит активный синтез вещества, причём, синтезируется целый спектр различных элементов, включая тяжёлые и сверхтяжёлые.

Чем больше перепад между уровнем собственной мерности звезды и уровнями собственной мерности зон искривления пространства, тем более тяжёлые элементы в состоянии «родиться» внутри этих зон и тем более устойчивы эти тяжёлые элементы. В зависимости от изначальных размеров, в течение жизни звезды может быть один или несколько взрывов сверхновой. При каждом таком взрыве, собственный уровень мерности звезды уменьшается, что приводит к уменьшению синтеза лёгких элементов и увеличению синтеза тяжёлых.

В результате этого, плотность, а следовательно, степень влияния звезды на окружающее про-странство увеличивается. Если изначальный вес звезды был меньше десяти солнечных, она, к моменту своей «смерти» (потуханию) превратится в так называемую нейтронную звезду. Если же, изначальный вес звезды превышал десять солнечных, то, в конце своего жизненного пути, звезда превращается в «чёрную дыру». Нейтронный остаток звезды (нейтронное вещество представляет собой такую качественную структуру физически плотного вещества, при которой только нейтроны, не имеющие электрических зарядов, образуют массу этого вещества и, в силу этого, нет «пустого» пространства между ними, как между ядрами соседних атомов) настолько сильно деформирует окружающее пространство, что происходит появление новой зоны смыкания, только уже с пространством-вселенной с меньшим уровнем собственной мерности L6.

L6, L7, L8 — мерности пространств-вселенных, образованных слиянием шести, семи и восьми форм материй.

Lс — звезда.

 

Неоднородная вселеннаяРис.2.5.3. Выброшенные во время взрыва сверхновой первичные материи — часть массы самой звезды, выброшенной при этом, попадают в зоны искривления мерности пространства, вызванные взрывом. В зонах деформации начинается активный процесс синтеза гибридных материй, и этот процесс продолжается до тех пор, пока гибридные материи собой не компенсируют полностью деформацию пространства, в котором происходит их синтез. Это происходит потому, что гибридные материи сами влияют на пространство, в котором они находятся. Причём, если изменение мерности в зоне деформации пространства, вызванное взрывом сверхновой считать отрицательным, то гибридные материи будут влиять на мерность пространства положительно, увеличивая мерность пространства в зоне деформации.

L6, L7, L8 — мерности пространств-вселенных, образованных слиянием шести, семи и восьми форм материй.

Lс — звезда.

 

Неоднородная вселеннаяРис. 2.5.4. Постепенно, вещество в зонах искривления уплотняется и рождаются планеты. Уплотнение вещества происходит в силу наличия внутри зон искривления перепада (градиента) мерности, направленного к центру неоднородности. Чем ближе зона искривления к звезде, тем перепад более ярко выражен. Поэтому ближние к звезде планеты будут меньшего размера и содержать большую долю тяжёлых элементов. Которые, к тому же и более устойчивы, так как собственный уровень зоны неоднородности планеты тем ниже, чем ближе планета к звезде. Таким образом, устойчивых тяжёлых элементов больше всего на Меркурии и, соответственно, по мере убывания доли тяжёлых элементов идут — Венера, Земля, Марс, Юпитер, Сатурн, Уран, Плутон.

L6, L7, L8 — мерности пространств-вселенных, образованных слиянием шести, семи и восьми форм материй.

Lс — звезда.

 

Неоднородная вселеннаяРис. 2.5.5. Искривление пространства, в котором возникают условия для слияния форм материй в вещество. Первичные материи имеют свои качества и свойства. Качества и свойства первичных материй имеют свои ограничение. Каждая конкретная величина — конечна, так же, как конечная величина имеет свою форму. Поэтому для того, чтобы произошло взаимодействие конечной величины (первичной материи) с конкретными свойствами и качествами и бесконечной величины (пространство) с непрерывно изменяющимися свойствами и качествами, необходимо, чтобы данная материя попала в зону этого пространства, имеющую адекватные свойства и качества. А это может произойти только в ограниченном объёме этого пространства. Поэтому, когда при взрыве суперновой, происходит деформация пространства, происходит и изменение в зонах деформации качеств и свойств этого пространства. В результате, в этих зонах первичные материи проявляют себя по-новому и происходит синтез гибридных материй.

 

Неоднородная вселеннаяРис.2.5.6. Слияние форм материй А и В в зоне искривления пространства, и образование вещества типа АВ. Это вещество — качественно отличается от форм материй его образующих, возникает новое качество из старых качеств. Причём, слияние материй происходит в ограниченном объёме, где параметры форм материй А и В — тождественны. Тождественность параметров первичных материй обусловлены тем, что они попадают в зону деформации пространства, возникшую при взрыве суперновой. В этой области пространства изменяются свойства и качества, в результате чего первичные материи, имеющие свои качества и свойства, начинают взаимодействовать между собой там где их свойства и качества тождественны друг другу. Именно, благодаря тождественности свойств и качеств области пространства и первичных материй возникают необходимые условия для слияния свободных первичных материй и образование гибридной формы с новыми свойствами и качествами. Причём, возникшая в результате синтеза гибридная форма сама влияет на пространство, в котором находится.

 

Неоднородная вселеннаяРис.2.5.7. Слияние форм материй А, В, С в зоне искривления пространства, и образование вещества типа АВС. Это вещество АВС качественно отличается, как от форм его образующих, так и от вещества типа АВ. Слияние происходит в меньшем объёме, чем при слиянии двух форм материй А и В, так как свойства и качества трёх первичных форм материй тождественны, соответственно, в меньшем объёме внутри зоны искривления пространства. В зоне деформации пространства свойства и качества меняются непрерывно. Первичные материи, качественно согласовываясь в конкретном объёме пространства создают гибридные формы материи, которые влияют на пространство, изменяя его свойства и качества, что делает возможным новое слияние первичных материй в другой комбинации. Возникает, так называемая, обратная связь, когда новое качество влияет на качество его породившее, изменяя его и создавая условия для зарождения нового качества.

A, B, C, D, E, F, G — семь первичных материй, образующих наше пространство-вселенную.

 

Неоднородная вселеннаяРис. 2.5.8. Слияние форм материй А, В, С, D в зоне искривления пространства и образование вещества типа АВСD. Это вещество занимает объём, меньший, чем вещество типа АВС потому, что свойства и качества четырёх форм материй тождественны в меньшем объёме внутри зоны искривления пространства, чем при слиянии трёх форм материй. Гибридная форма АВСD пространственно располагается внутри гибридной формы АВС. В свою очередь, новая гибридная материя влияет на окружающее пространство, создавая качественные условия для возможности синтеза новой гибридной материи, имеющей в своём качественном составе на одну первичную материю больше. При этом, каждая новая гибридная материя частично нейтрализует зону искривления пространства. Происходит постепенное заполнение «ямы» гибридными материями.

A, B, C, D, E, F, G — семь первичных материй, образующих наше пространство-вселенную.

 

Неоднородная вселеннаяРис. 2.5.9. Слияние форм материй A, В, С, D, E в зоне искривления пространства и образование вещества, типа АВСDE. Это вещество занимает объём меньший, чем вещество типа АВСD потому, что свойства и качества пяти форм материй тождественны в меньшем объёме внутри зоны искривления пространства, чем при слиянии четырёх форм материй. Гибридная форма АВСDE пространственно располагается внутри гибридной формы АВСD. В свою очередь, новая гибридная материя АВСDE влияет на окружающее пространство, создавая качественные условия для возможности синтеза новой гибридной материи, имеющей в своём качественном составе на одну первичную материю больше. При этом, каждая новая гибридная материя частично нейтрализует зону искривления пространства. Происходит постепенное заполнение «ямы» гибридными материями.

A, B, C, D, E, F, G — семь первичных материй, образующих наше пространство-вселенную

 

Неоднородная вселеннаяРис. 2.5.10. Слияние форм материй A, B, C, D, E, F в зоне искривления пространства и образование вещества типа ABCDEF. Это вещество занимает объём, меньший, чем вещество типа АВСDE потому, что свойства и качества шести форм материй тождественны в меньшем объёме внутри зоны искривления пространства, чем при слиянии пяти форм маерий. Гибридная форма АВСDEF пространственно располагается внутри гибридной формы АВСDE. В свою очередь, новая гибридная материя ABCDEF влияет на окружающее пространство, создавая качественные условия для возможности синтеза новой гибридной материи, имеющей в своём качественном составе, на одну первичную материю больше. При этом, каждая новая гибридная материя частично нейтрализует зону искривления пространства. Происходит постепенное заполнение «ямы» гибридными материями.

A, B, C, D, E, F, G — семь первичных материй, образующих наше пространство-вселенную.

 

Неоднородная вселеннаяРис. 2.5.11. Слияние семи форм материй A, B, C, D, E, F, G в зоне искривления пространства и образование вещества типа ABCDEFG. Это вещество занимает объём, меньший, чем вещество типа АВСDEF потому, что свойства и качества семи форм материй могут быть тождественны в меньшем объёме внутри зоны искривления пространства, чем при слиянии шести форм материй. Гибридная форма АВСDEFG пространственно располагается внутри гибридной формы АВСDFE. В свою очередь, новая гибридная материя АВСDEFG влияет на окружающее пространство, создавая качественные условия для возможности синтеза новой гибридной материи, имеющей в своём качественном составе на одну первичную материю больше. При этом, каждая новая гибридная материя частично нейтрализует зону искривления пространства. Происходит постепенное заполнение «ямы» гибридными материями.

A, B, C, D, E, F, G — семь первичных материй, образующих наше пространство-вселенную.

 

Неоднородная вселеннаяРис. 2.5.12. Планета Земля, возникшая в зоне искривления пространства в результате последовательного слияния семи форм материй и представляющая собой шесть материальных сфер разного количественного и качественного состава, одна внутри другой. Эти сферы вместе представляют одну систему — планету Земля и не могут существовать друг без друга. Поэтому, когда рассматриваются процессы, происходящие на физическом уровне, необходимо помнить, что это — только видимая верхушка айсберга, которым является планета. Внутренняя сфера, образованная семью формами материй есть физически плотная планета Земля.

1. Физически плотная (первая материальная) сфера.

2. Вторая материальная сфера.

3. Третья материальная сфера.

4. Четвёртая материальная сфера.

5. Пятая материальная сфера.

6. Шестая материальная сфера.

 

Неоднородная вселеннаяРис. 2.5.13. Структурный и качественный состав сфер Земли. На этой схеме наглядно видно, что есть общее и чем отличаются друг от друга материальные сферы Земли. Общие элементы создают условия для взаимодействия между сферами Земли, степень этого взаимодействия отражают коэффициенты α:

1. Физически плотная (первая материальная) сфера.

2. Вторая материальная сфера.

3. Третья материальная сфера.

4. Четвёртая материальная сфера.

5. Пятая материальная сфера.

6. Шестая материальная сфера.

7. Слой неискривлённого пространства.

α1 — коэффициент взаимодействия между физически плотной и второй материальными сферами.

α2 — коэффициент взаимодействия между физически плотной и третьей материальными сферами.

α3 — коэффициент взаимодействия между физически плотной и четвёртой материальными сферами.

α4 — коэффициент взаимодействия между физически плотной и пятой материальными сферами.

α5 — коэффициент взаимодействия между физически плотной и шестой материальными сферами.

α6 — коэффициент взаимодействия между физически плотной сферой и слоем неискривлённого (недеформированного) пространства.

h — качественный барьер между физически плотной и второй материальными сферами.

i — качественный барьер между физически плотной и третьей материальными сферами.

j — качественный барьер между физически плотной и четвёртой материальными сферами.

k — качественный барьер между физически плотной и пятой материальными сферами.

l — качественный барьер между физически плотной и шестой материальными сферами.

m — качественный барьер между физически плотной сферой и слоем неискривлённого пространства.

 

Неоднородная вселеннаяРис. 2.5.14. При слиянии в зоне искривления пространства, семь форм первичных материй образуют шесть видов вещества, которые отличаются друг от друга качественным и количественным составом. Эти вещества создают шесть материальных сфер, одна внутри другой, которые вызывают вторичное вырождение пространства (искривление) и нейтрализуют первичное искривление пространства, в котором происходило слияние этих семи форм материй. После завершения образования планеты, происходит распад некоторой части вещества, что вновь создаёт условия для синтеза вещества из свободных форм материй, возникает кругооборот вещества.

1. Физически плотная (первая материальная) сфера.

2. Вторая материальная сфера.

3. Третья материальная сфера.

4. Четвёртая материальная сфера.

5. Пятая материальная сфера.

6. Шестая материальная сфера.

 

Неоднородная вселеннаяРис. 2.5.15. После завершения процесса формирования планеты, первичные материи продолжают «втекать» и «вытекать» из зоны неоднородности. Гибридные формы материи, возникшие в результате синтеза из первичных, компенсируют перепад мерности в зоне неоднородности, но не «убирают» его. Поэтому, как проточная вода продолжает втекать и вытекать в водоём, поддерживая его уровень, так и первичные материи, после завершения формирования планеты, продолжают втекать и вытекать из зоны неоднородности. В силу того, что планета частично теряет своё вещество в основном в виде газового шлейфа и радиоактивного распада элементов, происходит незначительный дополнительный синтез физически плотного вещества и баланс, таким образом, восстанавливается. Внутри планетарной зоны неоднородности существует множество мелких неоднородностей, которые влияют на «протекающие» через них первичные материи, в результате чего, каждый участок поверхности пронизывают потоки первичных материй в определённом пропорциональном соотношении.

В результате этого, в зависимости от конкретного распределения, происходит синтез тех или иных элементов, при формировании планеты. Именно это является причиной образования залежей тех или иных элементов в разных участках коры и на различной глубине. И, когда эти залежи вырабатываются, на этом месте возникает неоднородность мерности, что провоцирует синтез тех же элементов. По завершению синтеза, баланс мерности восстанавливается. Правда, восстанавливающий баланс синтез мoжет продолжаться сотни, а порой и тысячи лет, и результаты его могут увидеть только последующие поколения. Таким образом, каждый участок поверхности планеты пронизывается в том или ином направлении определённой суперпозицией (пропорциональным соотношением) первичных материй. Восходящие потоки первичных материй, пронизывающие поверхность, создают, так называемые, положительные геомагнитные зоны, в то время как нисходящие — отрицательные.

1. Ядро планеты.

2. Пояс магмы.

3. Кора.

4. Атмосферы.

5. Вторая материальная сфера.

6. Циркуляция первичных материй через поверхность планеты.

7. Отрицательные геомагнитные зоны (нисходящие потоки первичных материй).

8. Положительные геомагнитные зоны (восходящие потоки первичных материй).

 

Неоднородная вселеннаяРис. 3.2.1. Если представить первичные материи одного типа в виде разноцветных кубиков одного размера, то, в этом случае, взаимодействие пространства и первичных материй можно представить в следующем виде. Каждая первичная материя имеет свои конкретные свойства и качества, поэтому, для того, чтобы она взаимодействовала с пространством, необходимо изменение свойств и качеств пространства до тех пор, пока они не станут тождественны свойствам и качествам данной первичной материи. Для того, чтобы произошли изменения свойств и качеств пространства, необходимо возмущение этого пространства. Подобное возмущение происходит при взрыве сверхновой. Продольные кольцевые волны возмущения мерности пространства распространяющиеся от эпицентра взрыва сверхновой и создают необходимые условия для появления нового качества — гибридных материй. Волны возмущения могут иметь разную амплитуду. Если амплитуда возмущения мерности пространства соизмерима с коэффициентом квантования ΔL =γi, то, только одна первичная материя А «резонирует» с пространством, и нового качества не образуется.

 

Неоднородная вселеннаяРис.3.2.2. Если амплитуда возмущения мерности пространства, возникшая при взрыве сверхновой, пропорциональна коэффициенту квантования, как величина ΔL = 2γi, то, тогда две первичные материи А и В «резонируют» с пространством, и возникает новое качество — гибридная материя АВ. При этом, гибридная форма сама влияет на пространство и нейтрализует полностью зону деформации пространства, в котором она возникла. Синтез гибридной формы материи АВ в зоне неоднородности пространства при этом как бы «замораживает» эту зону неоднородности, создавая стоячую волну мерности в пространстве. При этом, система возвращается к устойчивому состоянию, которое было до прихода продольной волны возмущения мерности пространства. Восстановление равновесия становится возможным только при возникновении стоячих волн мерности, за счёт гибридной материи и новое устойчивое состояние пространства качественно отличается от первоначального, появлением гибридной материи. Другими словами пространство, до взрыва сверхновой и после взрыва, качественно отличаются друг от друга.

 

Неоднородная вселеннаяРис. 3.2.3. Если амплитуда возмущения мерности пространства, возникшая при взрыве сверхновой, пропорциональна коэффициенту квантования, как величина ΔL = 3γi, то, тогда три первичные материи А, В и С «резонируют» с пространством, и возникает новое качество — гибридная материя АВС. При этом, гибридная форма сама влияет на пространство и нейтрализует полностью зону деформации пространства, в котором она возникла. Синтез гибридной материи АВС в зоне неоднородности пространства, нейтрализует эту неоднородность, создавая, как это уже отмечалось, стоячую волну мерности. Пространство возвращается к состоянию равновесия. Но, при этом, это состояние равновесия будет отличаться от любого другого, так как амплитуда стоячей волны мерности будет отличаться от амплитуд других стоячих волн в этом пространстве. Так как, если засыпать все ямы на дороге, то это не будет означать, что ямы исчезли или что они совершенно одинаковые, хотя бы потому, что, чтобы полностью засыпать ямы разной глубины потребуется разное количество щебня или чего-нибудь другого.

 

Неоднородная вселеннаяРис.3.2.4. Если амплитуда возмущения мерности пространства, возникшая при взрыве сверхновой, пропорциональна коэффициенту квантования, как величина ΔL = 4γi, то, тогда четыре первичные материи А, В, С и D «резонируют» с пространством, и возникает новое качество — гибридная материя АВСD. При этом, гибридная форма сама влияет на пространство и нейтрализует полностью зону деформации пространства, в котором она возникла. Синтез гибридной материи АВСD в зоне неоднородности пространства нейтрализует эту неоднородность, создавая, как это уже отмечалось, стоячую волну мерности. Пространство возвращается к состоянию равновесия. Но, при этом, это состояние равновесия будет отличаться от любого другого, так как амплитуда стоячей волны мерности будет отличаться от амплитуд других стоячих волн в этом пространстве.

 

Неоднородная вселеннаяРис.3.2.5. Если амплитуда возмущения мерности пространства, возникшая при взрыве сверхновой, пропорциональна коэффициенту квантования, как величина ΔL = 5γi, то, тогда пять первичных материй А, В, С, D и E «резонируют» с пространством, и возникает новое качество — гибридная материя АВСDE. При этом, гибридная форма сама влияет на пространство и нейтрализует полностью зону деформации пространства, в котором она возникла. Синтез гибридной материи АВСDE в зоне неоднородности пространства нейтрализует эту неоднородность, создавая, как это уже отмечалось, стоячую волну мерности. Пространство возвращается к состоянию равновесия. Но, при этом, это состояние равновесия будет отличаться от любого другого, так как амплитуда стоячей волны мерности будет отличаться от амплитуд других стоячих волн в этом пространстве.

 

Неоднородная вселеннаяРис.3.2.6. Если амплитуда возмущения мерности пространства, возникшая при взрыве сверхновой, пропорциональна коэффициенту квантования, как величина ΔL = 6γi, то, тогда шесть первичных материй А, В, С, D, E и F «резонируют» с пространством, и возникает новое качество — гибридная материя АВСDEF. При этом, гибридная форма сама влияет на пространство и нейтрализует полностью зону деформации пространства, в котором она возникла. Синтез гибридной материи АВСDEF в зоне неоднородности пространства нейтрализует эту неоднородность, создавая, как это уже отмечалось, стоячую волну мерности. Пространство возвращается к состоянию равновесия. Но, при этом, это состояние равновесия будет отличаться от любого другого, так как амплитуда стоячей волны мерности будет отличаться от амплитуд других стоячих волн в этом пространстве.

 

Неоднородная вселеннаяРис.3.2.7. Если амплитуда возмущения мерности пространства, возникшая при взрыве сверхновой, пропорциональна коэффициенту квантования, как величина ΔL = 7γi, то, тогда семь первичных материй А, В, С, D, E, F и G «резонируют» с пространством, и возникает новое качество — гибридная материя АВСDEFG. При этом, гибридная форма сама влияет на пространство и нейтрализует полностью зону деформации пространства, в котором она возникла. Синтез гибридной материи АВСDEFG в зоне неоднородности пространства нейтрализует эту неоднородность, создавая, как это уже отмечалось, стоячую волну мерности. Пространство возвращается к состоянию равновесия. Но, при этом, это состояние равновесия будет отличаться от любого другого, так как амплитуда стоячей волны мерности будет отличаться от амплитуд других стоячих волн в этом пространстве.

 

Неоднородная вселеннаяРис.3.2.8. Если амплитуда возмущения мерности пространства, возникшая при взрыве сверхновой, пропорциональна коэффициенту квантования, как величина 6γi < ΔL < 6,9γi , то тогда семь первичных материй А, В, С, D, E, F и G не могут «резонировать» с пространством, и не возникает новое качество — гибридная материя АВСDEFG. При данных условиях, только шесть первичных материй могут слиться и образовать гибридную материю АВСDEF. Каждая первичная материя имеет свои конкретные свойства и качества и не может взаимодействовать с другими частично какой-либо своей частью, а только целиком. Как не может быть пол человека или четверть человека, так как, человек представляет собой единый живой организм, все клетки которого работают вместе, обеспечивая условия жизнедеятельности организма в целом. Так и первичные материи не могут взаимодействовать только частью своего какого-нибудь свойства или качества, а только «целым» свойством или качеством. Таким образом, наблюдается квантование пространства по первичным материям.

 

Неоднородная вселеннаяРис. 3.2.9. В пространстве постоянно присутствуют незначительные колебания мерности пространства, представляющие собой реликтовые излучения космоса, которые представляют собой отголоски взрывов сверхновых, которые произошли миллиарды и миллиарды лет назад или излучения уже умирающих звёзд. Все эти излучения создают своеобразный пространственный «фон». И поэтому при ситуации, когда зона деформации мерности пространства лежит в диапазоне 6γi < ΔL < 6,9γi, реликтовые излучения пространства, несущие незначительные колебания мерности пространства, выступают в роли «палочки-выручалочки». Наложение (суперпозиция) амплитуд колебания мерности, которое они приносят с собой, на мерность пространства в данной точке пространства, временно на какое-то время будут создавать условия для слияния семи первичных материй.

 

Неоднородная вселеннаяРис. 3.2.10. После прохода фронта волны через данную точку пространства, мерность пространства возвращается к уровню, который был до прихода фронта волны и необходимые условия для синтеза семи первичных материй исчезают, и гибридная материя АВСDEFG распадается на первичные материи. Новый фронт волны восстанавливает необходимые для синтеза условия, и всё повторяется вновь. Гибридная материя АВСDEFG — физически плотное вещество — находится в состоянии мерцания, которое является пограничным состоянием физически плотной материи и есть ни что иное, как так называемый, электрон. Именно поэтому электрон обладает дуальными (двойственными) свойствами, как волны, так и частицы. В принципе электрон не является ни одним, ни другим, а является пограничной формой материи.

 

Неоднородная вселеннаяРис.3.2.11. При образования ядра атома, возникают возмущения мерности пространства, аналогичные возникающим при взрыве сверхновой, только всё происходит на уровне микропространства. Кольцевые волны возмущения мерности микропространства, создаваемые ядром атома, довольно быстро затухают и чем меньше ядро атома, тем быстрее происходит это затухание. Но, тем не менее, возникают одна или несколько зон деформации микропространства для слияния семи первичных материй АВСDEFG. Слияние семи первичных материй происходит в виде пограничной формы физически плотной материи. При этом вокруг ядра образуются стоячие волны мерности микропространства. В силу того, что на уровне микропространства постоянно присутствуют микроскопические колебания мерности микропространства, происходят периодические изменения уровня мерности в той или иной зоне стоячей волны мерности атома.

1. Первая разрешённая орбита электрона.

2. Вторая разрешённая орбита электрона.

3. Электрон.

 

Неоднородная вселеннаяРис.3.2.12. В силу того, что все известные излучения существуют в виде порций — фотонов — последние, при своём движении в пространстве, влияют только на ту или иную часть микропространства, в зависимости от длины волны данного фотона. Возмущение мерности приводит к тому, что пограничная форма материи — электрон — становится неустойчивым и распадается на первичные материи. При этом, происходит микроскопический взрыв, вся энергия которого уходит на создание одного фотона. Электрон исчезает с данной электронной орбиты и не только с орбиты. Данный электрон просто перестаёт существовать, «умирает». Продолжительность жизни электрона составляет триллионные доли секунды. После «смерти» электрона, на его месте появляется «вакансия». Дело в том, что наличие электрона создаёт зону стоячей волны на данной электронной орбите атома. После «смерти» электрона, эта зона становится неустойчивой активной, так как уровень собственной мерности этой зоны становится выше уровня собственной мерности атома в целом. Возникший таким образом микроскопический перед мерности создаёт «ловушку для фотонов».

 

Неоднородная вселеннаяРис. 3.2.13. Вакантная электронная зона не остаётся свободной «долгое» время. Всё пространство буквально насыщено микроскопическими колебаниями мерности, которые, в большинстве своём, представляют собой хаотические излучения электронов всей Вселенной. Происходит поглощение одного из этих фотонов и рождается новый электрон в той же самой зоне деформации — электронной орбите. Процесс смерти и рождения электрона происходит так быстро, что создаётся иллюзия мерцания одного и того же электрона. В силу того, что во время фазы вакантного электрона, присутствует и радиальный перепад мерности внутри зоны неоднородности, рождение нового электрона происходит не в том же самом месте, где исчез предыдущий электрон. Поэтому каждое новое рождение электрона происходит в новом месте. В результате, возникает мерцающее движение электрона по орбите вокруг ядра.

1. Первая разрешённая орбита электрона.

2. Вторая разрешённая орбита электрона.

3. Электрон.

 

Неоднородная вселеннаяРис.3.2.14. «Смерть» электрона может произойти на одной орбите, а новое «рождение» — на более близкой к ядру, или более дальней, орбитах. Это — известный в атомной физике факт. Причём, скачок может произойти только на одну орбиту вниз или одну орбиту вверх. В результате чего, меняется «прописка» вновь рождённого электрона, после распада предыдущего?! Чем «не понравилось» ещё не «рождённому электрону «старое» место прописки?! Да, ничем. Дело в том, что «прописка» электрона изменяется только, если на структуру стоячих волн атома накладывается возмущение мерности, длина волны которой соизмерима с расстоянием между соседними зонами деформации мерности вокруг ядра, другими словами соизмерима с расстоянием между соседними орбитами или присутствует внешний перепад мерности ΔL. В этих случаях место «рождения» электрона сносится гравитационным ветром в одну или в другую сторону, в зависимости от ситуации и направленности происходящих процессов.

 

Неоднородная вселеннаяРис. 3.3.1. Собственный уровень мерности водорода H (степень влияния атома или другого материального объекта на окружающее пространство) — столь незначительный, что делает его устойчивым в пределах всего диапазона мерности между физически плотной и второй материальными сферами. Водород может быть устойчивым, как и внутри раскалённой звезды, так и в межзвёздном пространстве. В силу этого, водород является самым распространённым элементом во Вселенной. Практически все процессы происходящие во Вселенной не обходятся без его участия. Водород — основа не только термоядерных реакций звёзд, но и играет важнейшую роль в обеспечении возможности существования живой материи.

1. Нижний уровень мерности физически плотной сферы.

2. Верхний уровень мерности физически плотной сферы.

 

Неоднородная вселеннаяРис. 3.3.2. Атом водорода Н является самым устойчивым и самым распространённым элементом в нашей Вселенной в силу того, что он (водород) оказывает минимальное влияние на окружающее пространство. В силу того, что для синтеза водорода из первичных материй достаточно незначительных изменений мерности пространства. Именно поэтому, водород является самым распространённым элементом во Вселенной. В то же самое время следует помнить, что каждый атом, в том числе и атом водорода, влияют на мерность пространства, заполняя деформацию пространства своей массой. Поэтому, после синтеза каждого атома, зона деформации пространства уменьшается на некоторую величину, пропорционально атомному весу данного атома. Поэтому, по мере синтеза физически плотной материи с каждым синтезируемым атомом, величина деформации пространства уменьшается, и этот процесс будет продолжаться до тех пор, пока зона деформации полностью не нейтрализуется за счёт возникших в результате синтеза атомов. При этом, прекращается и сам синтез.

 

Неоднородная вселеннаяРис.3.3.3. Во Вселенной постоянно происходит синтез атомов, в основном водорода; в силу этого, синтез возникает в зонах смыкания между данным пространством-вселенной и вышележащим. Поэтому зоны деформации пространства чаще всего возникают ближе к верхней границе устойчивости физически плотного вещества. И, как следствие этого, возникают оптимальные условия для синтеза именно водорода, в силу его минимального вторичного влияния на окружающее пространство. Так как зоны неоднородности имеют огромные пространственные размеры, синтезированные атомы начинают накапливаться в этих зонах, постепенно заполняя их собой. В силу того, что зоны неоднородности сами неоднородны в разных пространственных направлениях, возникают внутренние перепады (градиенты) мерности, направленные к центру зоны неоднородности. В результате чего, пленённые в зоне неоднородности атомы водорода попадают под воздействие потоков первичных материй, направленных к центру зоны неоднородности. И, как следствие, возникает сжатие водородного вещества, что приводит к разогреву и началу термоядерных реакций.

 

Неоднородная вселеннаяРис. 3.3.4. Для синтеза атома урана U зона деформации пространства должна быть максимально допустимой для возможных состояний физически плотного вещества. Деформация пространства, создаваемая ядром атома урана настолько значительна, что единичный атом урана практически полностью нейтрализует максимально возможный для физически плотной материи перепад мерности. Поэтому уран и все трансурановые элементы становятся неустойчивыми и начинают распадаться на материи их образующие в обычных условиях. Так как даже поглощения излучений шумового фона Вселенной достаточно, чтобы состояние атома, поглотившего фотон этого фона, стало сверхкритическим и он распался. В процессе распада из освободившихся первичных материй происходит синтез устойчивых в данных условиях атомов и происходит мощный выброс излучений. После чего система возвращается к устойчивому состоянию. Процессы и причины, приводящие к взрыву сверхновой и процессы и причины, приводящие к радиоактивному распаду, имеют тождественную природу, имея особенности, вызванные различиями между макро- и микромиром.

 

Неоднородная вселеннаяРис.3.3.5. Сопоставление степени влияния на окружающий микрокосмос (микропространство) атома водорода H и атома урана U. Собственный уровень мерности урана U позволяет ему быть устойчивым в пределах незначительного диапазона мерности. Именно поэтому уран и все трансурановые элементы радиоактивны, т.е., неустойчивы, практически, при любых условиях. В то время, как водород и другие лёгкие элементы, становятся неустойчивыми только в определённых условиях. Чем легче элемент, тем он более устойчив, а это означает, что необходимо большее внешнее воздействие, чтобы вызвать его неустойчивость.

1. Нижний уровень мерности физически плотной сферы.

2. Верхний уровень мерности физически плотной сферы.

 

Неоднородная вселеннаяРис. 3.3.6. Синтез атомов водорода может происходить в пределах практически всего диапазона устойчивости физически плотного вещества. Уровень собственной мерности водорода, тем не менее, близок к верхней границе устойчивости. Вступает в силу эффект поплавка. Оптимальный уровень мерности водорода находится близко к верхней границе диапазона устойчивости.

Это связано с тем, что водород — легчайший из атомов и его собственное влияние на окружающие пространство минимально. И поэтому потоки первичных материй, которые после завершения процесса синтеза продолжают циркулировать в зоне деформации пространства, «выносят» атомы водорода на тот уровень мерности, при котором их собственное влияние на окружающее пространство уравновешивает воздействие потоков первичных материй. Аналогом может служить уравновешивание плавучести объекта, погружённого под воду его весом, в результате чего, материальный предмет остановится на той глубине, где обе эти силы уравновешивают друг друга. При этом объект как бы зависает на определённой глубине. Так и любой атом будет стремиться к своему оптимальному уровню.

 

Неоднородная вселеннаяРис.3.3.7. Практически все атомы имеют радиоактивные изотопы. Радиоактивные изотопы водорода — дейтерий и тритий — имеют в своих ядрах на один или два нейтрона больше, чем у собственно водорода. Их атомный вес на одну или две атомные единицы отличается от атомного веса водорода и, тем не менее, они являются радиоактивными. В то время, как атомы других элементов, имеющих точно такой и даже больший атомный вес, не проявляют признаков радиоактивности и только их изотопы, имеющие «лишний» нейтрон, проявляют себя, как радиоактивные элементы. Атомы очень многих элементов в своих устойчивых состояниях имеют в своих ядрах нейтроны, порой десятки, и, тем не менее, не становятся радиоактивными. Почему появление ещё одного нейтрона, в дополнение к уже присутствующим, делает подобный атом радиоактивным? Всё дело в том, что лишний нейтрон не меняет оптимального уровня мерности атома в целом, а изменяет степень влияния ядра этого атома, в пределах самого ядра. Поэтому атом с «лишним» нейтроном продолжает вести себя, как и атом без оного и, в результате, становиться радиоактивным.

 

Неоднородная вселеннаяРис. 3.3.8. Радиоактивный изотоп водорода — дейтерий D — вне зависимости от того, где произошёл его синтез, устремляется к оптимальному уровню собственной мерности обычного водорода H и в результате этого, оказывается в близких к критическим для физически плотного вещества условиях. Пространство постоянно насыщено микроскопическими колебаниями мерности пространства на разных уровнях собственной мерности, в том числе и на уровне оптимальной мерности водорода. В основном, эти микроскопические колебания мерности (фотоны) возникают при переходах электронов с более удалённых от ядра орбит на более близкие к ядру у тех же самых атомов водорода, что «плавают» на уровне своей оптимальной мерности. При поглощении (наложении на атом) этих фотонов атомами дейтерия D, уровень собственной мерности увеличивается и в результате, такой атом оказывается за пределами диапазона устойчивости физически плотного вещества.

1. Нижний уровень мерности физически плотной сферы (Ф.П.С).

2. Верхний уровень мерности Ф.П.С.

 

Неоднородная вселеннаяРис. 3.3.9. Каждая молекула или атом имеют свой диапазон мерности, в пределах которого, они сохраняют свою устойчивость. Поэтому физически плотная материя планеты распределяется по диапазонам устойчивости. Границы этих диапазонов являются уровнями разделения между атмосферой, океанами и твёрдой поверхностью планеты. Граница устойчивости кристаллической структуры планеты повторяет форму неоднородности, поэтому поверхность твёрдой коры имеет впадины и выступы. Впадины впоследствии заполнились водой и образовали океаны, моря, озёра. Вода, представляющая собой жидкий кристалл и имеющая незначительный уровень собственной мерности, устойчива в верхнем участке диапазона, именно это позволяет ей скапливаться во впадинах коры.

Атмосфера, плавно переходящая в ионосферу (плазменное граничное состояние физически плотного вещества), занимает верхний пограничный участок диапазона мерности физически плотного вещества. После синтеза физически плотного вещества, атомы приобретают некоторую устойчивость к внешним перепадам мерности макрокосмоса. Поэтому только когда амплитуда внешнего перепада мерности станет соизмеримой с половиной диапазона мерности физически плотной сферы, атомы становятся неустойчивыми и распадаются.

Любое изменение мерности макропространства вызванное, в том числе и вспышками солнечной активности, изменение общего уровня мерности макропространства, в силу того, что солнечная система движется относительно ядра нашей галактики, и, как следствие этого, попадает в области с другими уровнями собственной мерности, в силу неоднородности самого пространства, приводит к напряжениям в земной коре. Напряжения в коре приводят к её расколам, опусканию или поднятию её в разных местах, извержению вулканов и появлению новых, как результат изменения условий движения магмы и т.д. Происходит перераспределение физически плотного вещества внутри зоны неоднородности планеты, в соответствии с положением уровней оптимальной мерности для разных агрегатных состояний физически плотной материи: твёрдого, жидкого, газообразного и плазменного.

1. Уровень мерности атмосферы.

2. Уровень мерности океанов.

3. Уровень мерности земной коры.

4. Уровень мерности магмы.

 

Неоднородная вселеннаяРис. 3.3.10 Каждый атом имеет свой собственный уровень мерности и если этот уровень совпадает с уровнем мерности макропространства, где этот атом находится, то он будет находиться в устойчивом состоянии. В противном случае, атом станет неустойчивым и произойдёт его распад. Два атома разных элементов A1 и A2 имеют разные уровни собственной мерности в силу того, что они имеют разный атомный вес и, вследствие этого, по разному влияют на своё микропространство. Поэтому уровни собственной мерности двух атомов разных элементов отличаются друг от друга на некоторую величину ΔL и поэтому не могут в обычных условиях образовать одну систему.

A1 — ядро первого атома.

A2 — ядро второго атома.

LА1 — уровень собственной мерности первого атома.

LА2 — уровень собственной мерности второго атома.

ΔL — перепад между уровнями собственной мерности двух разных атомов.

 

Неоднородная вселеннаяРис.3.3.11. Возможность для атомов, имеющих разные уровни собственной мерности, образовывать молекулы появляется при поглощении или излучении одним из них электромагнитных волн, длина волны которых соизмерима с расстоянием между этими атомами. Данным требованиям отвечают волны из диапазона от инфракрасных до ультрафиолетовых, включительно. При поглощении одним из атомов волны, его уровень собственной мерности увеличивается на величину амплитуды волны. При излучении волны уровень собственной мерности соответственно уменьшается на величину амплитуды излучаемой волны. В результате, собственные уровни разных атомов A1 и A2 выравниваются, и они в состоянии образовать новую молекулу. Весь спектр химических соединений, существующих в природе, включая и органические, существует, благодаря небольшому участку — диазону так называемых электромагнитных волн. Следовательно, появление живой материи невозможно без этих незначительных колебаний мерности микропространства — электромагнитных волн от инфракрасных до ультрафиолетовых.

 

Неоднородная вселеннаяРис.3.3.12. Атомы одного и того же элемента имеют одинаковые оптимальные уровни собственной мерности. Поэтому если среда, где они находятся не насыщена чрезмерно инфракрасными (тепловыми) излучениями, через некоторое время, эти атомы соберутся на уровне оптимальной мерности, что создаёт качественные условия для соединения их электронных оболочек между собой и образования кристаллической структуры. При этом говорят о температуре среды, при которой происходит кристаллизация. Для атомов разных элементов эта температура своя, так же, как и после завершения процесса кристаллизации кристаллы разных элементов будут иметь разные уровни собственной мерности, и между ними будет существовать перепад мерности ΔL.

A1 — ядра атомов первого элемента.

A2 — ядра атомов второго элемента.

L1 — уровень мерности кристалла первого элемента.

L2 — уровень мерности кристалла второго элемента.

ΔL — перепад между уровнями собственной мерности двух разных элементов.

 

Неоднородная вселеннаяРис.3.3.13. Кристаллические структуры разных элементов имеют разные уровни собственной мерности. И если поместить эти кристаллические структуры на расстоянии, соизмеримом с размерами самих кристаллов, в промежуточном пространстве возникнет перепад мерности (градиент) от уровня кристаллической структуры большей собственной мерности к уровню с меньшей. Этот перепад не столь значительный, чтобы вызвать неустойчивость атомов, образующих эти кристаллические структуры, но, если между ними поместить жидкую среду, насыщенную положительными и отрицательными ионами, перепад между кристаллическими структурами заставит двигаться свободные ионы в разных направлениях.

При этом положительные ионы, имеющие более высокий уровень собственной мерности, под воздействием этого перепада начнут скапливаться на поверхности кристаллической структуры с большим уровнем собственной мерности, в то время, как отрицательные ионы с меньшим уровнем собственной мерности — на поверхности с меньшим уровнем собственной мерности. Избыток положительных ионов на одной поверхности позволяет говорить о положительном заряде, в то время, как избыток отрицательных ионов — об отрицательном заряде поверхностей. Наличие перепада уровней собственной мерности между разными кристаллическими поверхностями вызывает перераспределение ионов, насыщающих промежуточную среду и приводит к появлению, так называемого, постоянного электрического тока между этими поверхностями, если соединить их между собой посредством проводника.

1. Кристаллическая поверхность с меньшим уровнем собственной мерности.

2. Кристаллическая поверхность с большим уровнем собственной мерности.

3. Промежуточная жидкая среда насыщенная ионами.

4. Положительные ионы.

5. Отрицательные ионы.

L1 — уровень мерности кристалла первого элемента.

L2 — уровень мерности кристалла второго элемента.

ΔL — перепад между уровнями собственной мерности двух разных элементов.

 

Неоднородная вселеннаяРис.3.3.14. Кристаллическая решётка любого твердого вещества неоднородна в разных пространственных направлениях. Это является результатом того, что синтез атомов происходит в неоднородном пространстве. Неоднородное пространство, взаимодействуя с неоднородной структурой атомов, вынуждает их ориентироваться и располагаться по отношению друг к другу в определённом порядке. Поэтому, практически, все кристаллы анизотропны, т.е., их свойства и качества различны в разных пространственных направлениях. В силу тех же причин их реакция на одно и тоже внешнее воздействие будет зависеть от того, в каком пространственном направлении это воздействие происходит. Поэтому, перепад мерности вдоль оптической оси кристалла получил название электрического поля Е, так как заставляет электроны перепрыгивать с орбиты одного атома на орбиту другого. В то время, как перепад мерности перпендикулярный оптической оси кристалла получил название магнитного поля В, так как, заставляет атомы или группы атомов переориентироваться в пространстве. Хотя, в обоих случаях присутствует перепад мерности пространства ΔL.

 

Неоднородная вселеннаяРис.3.3.15. Постоянное магнитное поле В представляет собой перепад мерности пространства, который накладывается на кристаллическую систему в направлении, перпендикулярном оптической оси кристалла. И если условно принять верхнюю границу устойчивости физически плотного вещества за «север», а нижнюю — за «юг», то перепад мерности с юга на север выступает, как северный магнитный полюс, а перепад мерности с севера на юг выступает, как южный магнитный полюс. Эти отличия определяются неоднородностью кристаллов в указанных направлениях (верх-низ). Неоднородность свойств кристаллических решёток связана с пространственной ориентацией электронных орбит. Поэтому перепад мерности с «юга на север» облегчает «переходы» электронов с орбиты на орбиту, как внутри отдельного атома, так и между соседними атомами кристаллической решётки. В то время, как перепад мерности с «севера на юг» — в значительной степени, затрудняет указанные переходы.

A1, A2 — ядра атомов кристаллической структуры.

1. Постоянное магнитное поле.

B — перепад мерности вдоль оптической оси кристалла.

 

Неоднородная вселеннаяРис.3.3.16. Постоянное электрическое поле Е представляет собой перепад мерности вдоль оптической оси кристаллических решёток. Направление электрического поля может быть, как с «запада на восток», так и с «востока на запад». При этом свойства электрического поля будут тождественны в силу того, что кристаллические решётки в данных направлениях тождественны. Природа электрического поля проста. Оно создаёт «гравитационный ветер». Перепад мерности вдоль оптической оси сносит электроны с электронной орбиты одного атома на орбиты другого во время фазы между материализациями электрона. Атомы расположенные вдоль оптической оси кристалла попадают под различное по силе влияние перепада мерности, в результате чего происходит перераспределение электронов у атомов вдоль оптической оси, что и создаёт, так называемый, электрический ток — направленное движение электронов от плюса к минусу.

A1, A2 — ядра атомов кристаллической структуры.

2. Постоянное электрическое поле.

E — Перепад мерности вдоль оптической оси кристалла.

 

Неоднородная вселеннаяРис.3.3.17. Переменное магнитное поле В представляет собой периодическое (волнообразное) изменение мерности пространства в направлении, перпендикулярном оптической оси кристалла. При этом один и тот же атом кристаллической решётки периодически попадает под перепады мерности, как в направлении с «юга на север», так и в направлении с «севера на юг». В силу чего периодически каждый атом оказывается в разных качественных условиях. В результате этого каждый атом будет периодически оказываться в условиях, когда его электроны то «прикреплены» к своему атому более жёстко, то наоборот практически «свободны», в зависимости от того, в каком направлении действует перепад мерности на данном отрезке оптической оси кристалла. Естественно, разные кристаллы, состоящие из атомов разных элементов, будут реагировать на подобные перепады мерности по-разному в силу того, что они имеют разные ядра и разное число электронов с разными электронными оболочками. Наиболее слабо электроны «связаны» со своими атомами у металлов, которые носят название проводников электричества.

 

Неоднородная вселеннаяРис.3.3.18. Переменное электрическое поле Е представляет собой периодическое (волнообразное) изменение мерности пространства вдоль оптической оси кристалла. При этом один и тот же атом кристаллической решётки периодически попадает под перепады мерности, как в направлении с «запада на восток», так и в направлении с «востока на запад». В результате чего происходит периодическое перераспределение электронов вдоль оптической оси, как в одном, так и в другом направлении. Возникает переменный электрический ток. Один и тот же атом попадает под противоположные перепады мерности вдоль оптической оси кристаллической решётки. При этом каждый атом то теряет электроны, то получает их от соседних атомов. При этом регулированием амплитуды и частоты можно получить новые качественные состояния физической материи за счёт кратковременного перехода атома или группы атомов на уровни мерности выше или ниже оптимального для данного элемента. Такие переходы провоцируют излучение или поглощение этими атомами фотонов, на которые данные атомы не реагируют в своём обычном состоянии.

 

Неоднородная вселеннаяРис.3.3.19. Если вспомнить, что переменное магнитное поле В представляет собой перепад мерности перпендикулярно оптической оси в направлениях «с севера на юг» и с «юга на север», то результатом такого периодического воздействия на пространственно неоднородную структуру физически плотного вещества является потеря или приобретение дополнительных электронов атомом или группой атомов вдоль оптической оси кристаллической решётки. Периодическая потеря или приобретение атомами электронов есть ни что иное, как переменный электрический ток. Таким образом переменное магнитное поле порождает переменное электрическое поле и наоборот. При этом «рождение» электрического поля происходит с некоторой задержкой, с так называемой, сдвижкой по фазе, что создаёт условия для возможности распространения электромагнитных волн в пространстве. Магнитное и электрическое поля, как постоянные, так и переменные, являются результатом воздействия на пространственно неоднородное физически плотное вещество одного и того же по своей природе перепада мерности в разных направлениях.

 

Неоднородная вселеннаяРис.4.2.1. При поглощении атомами волн, их уровень мерности увеличивается. Солнечный свет поглощается поверхностью планеты. Каждый атом, после поглощения фотона света, некоторое время находится в возбуждённом состоянии (его уровень собственной мерности становится выше уровней мерности соседних атомов, образующих кристаллическую решётку), после чего, излучает волну. Атом поглощает одну волну, а излучает другую. Это происходит потому, что часть энергии поглощённой волны теряется. В результате этого «разогретая поверхность» в течение солнечного дня начинает сама излучать волны, в основном, тепловые. Излучённые разогретой поверхностью тепловые волны начинают поглощаться молекулами атмосферы. При этом уровень собственной мерности атомов атмосферы над разогретой поверхностью увеличивается. И, в итоге, общий уровень собственной мерности атмосферы над разогретой поверхностью увеличивается, в то время, как собственный уровень мерности атмосферы над неосвещённой поверхностью, уменьшается. Уменьшение собственной мерности атмосферы над неосвещённой (ночной) поверхностью планеты или частично освещённой происходит в силу того, что атомы атмосферы тоже излучают волны и это приводит к уменьшению собственной мерности излучающих молекул. В результате, между освещённой и неосвещённой поверхностями планеты возникает горизонтальный перепад (градиент) мерности. Поэтому несвязанные в жёсткую систему молекулы атмосферы начинают двигаться вдоль этого горизонтального перепада мерности, что и является причиной движения слоёв атмосферы — ветра.

1. Поверхностный слой планеты с атмосферой.

2. Качественный барьер между физически плотной и второй материальной сферами.

3. Качественный барьер между второй и третьей материальными сферами.

4. Вертикальный перепад мерности внутри неоднородности.

5. Продольный (горизонтальный) перепад мерности, возникающий между освещённой и неосвещённой поверхностями планеты.

6. Увеличение качественного барьера над освещённой поверхностью.

7. Скопление первичных материй на границе между физически плотной и второй материальной сферами над освещённой поверхностью.

 

Неоднородная вселеннаяРис.4.3.1. Пространственная структура алмаза, в кристалле которого атомы углерода С располагаются на одинаковом друг от друга расстоянии. Расстояние между атомами углерода в кристалле алмаза соизмеримо с размерами самих атомов углерода. Поэтому никакие другие атомы и молекулы не только большего чем атом углерода размера, но и меньшего не в состоянии двигаться между ними. Возможна только лишь замена некоторых атомов углерода на другие, что приводит к тому, что прозрачный кристалл алмаза приобретает окраску. По этой причине человек имеет возможность любоваться красотой жёлтых, голубых, красных и чёрных алмазов, которые, обработанные рукой человека, превращаются в изумительные по своей красоте камни... Кроме этого, подобная кристаллическая решётка делает алмаз самым прочным соединением атомов в природе, и это делает его незаменимым в технике.

а. Расстояние между атомами углерода С в кристалле алмаза.

 

Неоднородная вселеннаяРис.4.3.2. Пространственная структура графита, в кристалле которого атомы углерода, в горизонтальной плоскости расположены на одинаковом расстоянии, в то время, как расстояние между слоями в вертикальной плоскости значительно больше расстояния между атомами углерода в горизонтальной. Такое, казалось бы, незначительное отличие в пространственном расположении атомов углерода делает эти кристаллы очень мягкими. Эта пространственная организация атомов углерода носит названия графита и очень широко используется в промышленности и в быту (стержни карандашей, в электронике и т.п.). Те же самые атомы углерода, что создают самое прочное соединение в природе — алмаз, создают и самый мягкий из природных кристаллических соединений — графит. Казалось бы незначительное изменения в пространственной структуре соединения атомов углерода превращает самое прочное соединение атомов в природе, в самое мягкое. Причина такого отличия в свойствах этих соединений углерода С заключаются в различных внешних условиях, при которых они образуются.

 

Неоднородная вселеннаяРис.4.3.3. Пространственная структура углеродной цепочки. Соединяясь в цепочки, атомы углерода С могут создавать молекулы в сотни тысяч, миллионы атомных единиц. При этом, такие молекулы влияют на окружающий микрокосмос неравномерно, создавая вокруг себя анизотропную структуру микрокосмоса. Возможность создавать атомами углерода подобные соединения определяется тем, что он — четырёхвалентный. Именно это свойство электронных оболочек атомов углерода создаёт спектр качеств, благодаря которым, стало возможным появление жизни. Так называемые, внешние электроны атомов углерода способны создавать соединения с внешними электронами других атомов в перпендикулярных относительно друг друга направлениях. Именно это свойство позволяет атомам углерода С создавать различные пространственные соединения.

С — атомы углерода.

Н — атомы водорода.

 

Неоднородная вселеннаяРис. 4.3.4. Пространственная структура цитозина, одного из четырёх нуклеотидов, структурно образующих молекулы ДНК и РНК. Соединяясь между собой, нуклеотиды образуют спирали молекул ДНК и РНК, которые являются фундаментом жизни. Чудо жизни рождается, как следствие качественно другого пространственного соединения атомов углерода между собой. Подобная пространственная структура соединения атомов углерода образуется в водной среде во время атмосферных разрядов электричества. Три вида соединения атомов углерода между собой порождают три вида пространственной организации материи — изотропную структуру алмаза, изотропную по двум пространственным направлениям и анизотропную по одному, структуру графита и, наконец, анизотропную по всем пространственным направлениям, структуру молекул ДНК и РНК. Таким образом, анизотропность материи является фундаментом жизни.

С — атомы углерода.

Н — атомы водорода.

О — атомы кислорода.

N — атомы азота.

 

Неоднородная вселеннаяРис.4.3.5. Пространственная структура сегмента молекулы РНК, представляющая собой последовательное соединение в цепочку нуклеотидов — гуанина, аденина, тимина и цитозина. Молекулярный вес этой молекулы составляет сотни тысяч, миллионы атомных единиц и распределён непропорционально в разных пространственных направлениях, что и является уникальным свойством этой молекулы. Пространственная анизотропность молекул ДНК и РНК является необходимым условием зарождения жизни. Именно пространственная неоднородность на уровне микрокосмоса создаёт необходимые и достаточные условия для появления живой материи. Для неживой материи характерно наличие изотропной, симметричной пространственной организации материи. Пространственная и качественная асимметрия — необходимые условия для живой материи. Не правда ли, любопытный парадокс природы? Асимметрия — живая материя. Пространственная неоднородность является не только причиной рождения звёзд и «чёрных дыр» во вселенной, но и причиной чуда природы — жизни.

 

Неоднородная вселеннаяРис.4.3.6. Пространственный вид с торца молекул РНК и ДНК. Спирали этих молекул создают в микропространстве как бы туннель, внутренний объём которого имеет радиальный перепад мерности. Внутри спиралей молекул РНК и ДНК создаётся анизотропная структура микропространства. Возникает своеобразная засасывающая воронка для всех молекул, которые при своём движении внутри клетки попадают в «опасную» близость от молекул ДНК и РНК. Не правда ли, любопытная аналогия с «чёрной дырой», которая засасывает в себя любую материю, попавшую на её «территорию» — область пространства, в пределах которого действует избыточное притяжение. Как в случае молекул ДНК и РНК, так и в случае «чёрных дыр» засасывание материи происходит в результате наличия некоторого постоянного перепада мерности в зоне расположения этих материальных объектов. Различие только в величине этого перепада мерности и в том, что в случае молекул ДНК и РНК имеют место процессы, происходящие на уровне микропространства, а в случае «чёрных дыр» — макропространства.

 

Неоднородная вселеннаяРис.4.3.7. Спиралевидная пространственная форма молекул РНК и ДНК обеспечивает создание во внутреннем объёме этих молекул анизотропного микропространства. Радиальный и продольный перепады мерности, накладываясь друг на друга во внутреннем объёме спиралей молекул РНК и ДНК, создают продольную стоячую волну перепада мерности. Подобная пространственная структура создаёт ловушку для всех других молекул, как органического, так и неорганического происхождения. В результате броуновского движения молекул внутри клетки, они оказываются вблизи молекулы РНК или ДНК. Радиальный перепад уровня мерности внутри спиралей этих молекул заставляет, попавшие во внутренний объём спиралей молекулы двигаться вдоль, так называемой, оптической оси молекул ДНК и РНК. При своём движении во внутреннем объёме спиралей молекул ДНК или РНК, «пленённые» молекулы попадают под действие перепадов уровней мерности.

1. Анизотропный внутренний объём спирали РНК или ДНК.

2. Перепад (градиент) мерности микропространства вдоль оси Y.

3. Перепад (градиент) мерности микропространства вдоль оси Z.

4. Стоячая волна перепада мерности микропространства внутреннего объёма спиралей молекул РНК и ДНК вдоль оси Х, совпадающей с осью этих молекул.

5. Пленённая внешняя молекула D.

 

Неоднородная вселеннаяРис.4.3.8. Попавшие во внутренний объём спиралей РНК и ДНК молекулы, под воздействием радиального перепада мерности вынужденно начинают двигаться вдоль оси спирали. При своём движении вдоль оси, пленённая молекула попадает под продольные перепады мерности микропространства, создаваемые стоячей волной мерности. Для большинства пленённых молекул этот перепад запредельный и приводит к тому, что эти молекулы начинают распадаться на первичные материи их образующие.

1. Анизотропный внутренний объём спирали РНК или ДНК.

2. Перепад (градиент) мерности микропространства вдоль оси Y.

3. Перепад (градиент) мерности микропространства вдоль оси Z.

4. Стоячая волна перепада мерности микропространства внутреннего объёма спиралей молекул РНК и ДНК вдоль оси Х, совпадающей с осью этих молекул.

5. Пленённая внешняя молекула D.

 

Неоднородная вселеннаяРис.4.3.9. Под воздействием продольных перепадов мерности вдоль оси спирали молекула оказывается в неустойчивом состоянии и, когда раскачка достигнет критической величины, происходит распад этой молекулы D на первичные материи, её образующие. При этом, происходит синтез молекул D' с таким уровнем собственной мерности, при котором эти молекулы сохраняют свою устойчивость под воздействием продольных перепадов мерности стоячей волны спирали молекулы РНК или ДНК. Эти, устойчивые к подобным перепадам вновь синтезированные из первичных материй молекулы являются токсинами, шлаками и должны быть выведены из организма. Таким образом, во внутреннем объёме спиралей молекул ДНК и РНК происходят ядерные реакции распада и синтеза. Но это — ядерные реакции другого типа, когда распаду подвергаются внешние молекулы, попавшие в «ловушку» спиралей молекул РНК или ДНК. Но, тем не менее, факт остаётся фактом, в живой материи происходят ядерные реакции расщепления и синтеза молекул. И никакого противоречия в этом нет; в живой материи ядерные реакции происходят только внутри спиралей молекул ДНК и РНК, в микроскопическом объёме, какими бы большими не были бы эти молекулы. И при этом, не возникает цепной реакции, как в случае классических ядерных реакций.

1. Анизотропный внутренний объём спирали РНК или ДНК.

2. Перепад (градиент) мерности микропространства вдоль оси Y.

3. Перепад (градиент) мерности микропространства вдоль оси Z.

4. Стоячая волна перепада мерности микропространства внутреннего объёма спиралей молекул РНК и ДНК вдоль оси Х, совпадающей с осью этих молекул.

5. Пленённая внешняя молекула D.

 

Неоднородная вселеннаяРис.4.3.10. Формирование на втором материальном уровне копии молекулы РНК или ДНК так называемого, второго материального тела. Это тело создаётся из первичной материи G. Качественное отличие между физически плотной и второй материальной сферами, состоит в отсутствии на втором материальном уровне первичной материи G и, когда в зоне влияния спиралей молекул РНК или ДНК исчезает качественный барьер между физически плотной и второй материальной сферами, происходит восстановление качественного баланса по первичным материям. Второе материальное тело формируется из первичной материи, которая высвобождается при расщеплении молекул на материи их образующие во внутреннем объёме спиралей молекул ДНК и РНК. Микроскопические живые «чёрные дыры» в клетках обеспечивают непрекращающийся поток высвободившихся первичных материй на второй материальный уровень, что обеспечивает постоянное подпитывание вторых материальных тел первичной материей G, их стабильность.

1. Физически плотная молекула РНК.

2. Второе материальное тело молекулы РНК.

 

Неоднородная вселеннаяРис. 4.3.11. Молекулы РНК или ДНК создают не только стоячую волну мерности во внутреннем объёме, но и создают вокруг себя перепад мерности микропространства. В результате этого, вокруг спиралей этих молекул образуются слои, имеющие тождественные уровни мерности. Влияние спиралей этих молекул на внешнее пространство значительно меньше влияния на мерность микропространства внутреннего объёма спиралей молекул РНК или ДНК. Тем не менее, на уровне микропространства спирали этих молекул выступают, как центры деформации микропространства. Молекулы ДНК и РНК на уровне микрокосмоса имеют двойственные свойства. Эти молекулы одновременно являются и аналогами «чёрных дыр» и звёздных систем на уровне микропростанства. Внутренний объём молекул РНК и ДНК проявляет свойства, аналогичные «чёрной дыре» макропространства, в то время, как внешний объём этих молекул проявляет свойства, аналогичные звезде. Все другие молекулы, попадая в поле притяжения этих «звёзд» — «чёрных дыр» микропространства или втягиваются во внутренний объём спиралей молекул РНК или ДНК, где распадаются на первичные материи их образующие, или оседают на уровнях тождественной мерности, которые возникают вокруг этих молекул. Первичные структуры молекулы белка, попадая в поле притяжения спиралей молекул РНК или ДНК, начинают оседать на уровне тождественной мерности LPr.

1. Физически плотная молекула ДНК или РНК.

2. Белковая оболочка.

3. Перепад мерности микропространства создаваемый внутренним объёмом молекулы ДНК или РНК.

4. Первичные структуры молекул белка.

P — аминокислоты белков.

R2 — свободные радикалы аминокислот белков.

LPr — уровень тождественной мерности первичной структуры молекулы белка.

 

Неоднородная вселеннаяРис. 4.3.12. Со временем, первичных структур молекул белка, захваченных полем притяжения молекул РНК и ДНК, становится всё больше и больше. Расположенные близко друг к другу, первичные структуры молекулы белка, посредством водородных связей и разнообразных связей между радикалами аминокислот, образующих первичные структуры белков, начинают создавать вторичную структуру белка.

В отличие от свободного синтеза белка из первичных стуктур белка, соединение последних происходит не произвольно. Удерживаемые полем притяжения спирали молекулы РНК или ДНК, первичные структуры белка вынужденно соединяются вдоль уровня тождественной мерности. В результате этого на уровне тождественной мерности LPr начинает формироваться белковая оболочка вокруг спирали молекулы ДНК или РНК. Уровень тождественной мерности вокруг спиралей молекул РНК и ДНК выступает, как организующее поле, заставляющее первичные структуры белка, захваченные «полем тяготения» спирали, соединяться в определённом порядке, как, например, силовые линии магнитного поля вынуждают крупицы металла располагаться по контурам этих силовых линий, которые, по сути своей, являются уровнями тождественной мерности, создаваемыми магнитом вокруг себя.

1. Физически плотная молекула ДНК или РНК.

2. Белковая оболочка.

3. Перепад мерности микропространства создаваемый внутренним объёмом молекулы ДНК или РНК.

4. Первичные структуры молекул белка.

P — аминокислоты белков.

R2 — свободные радикалы аминокислот белков.

LPr — уровень тождественной мерности первичной структуры молекулы белка.

 

Неоднородная вселеннаяРис. 4.3.13. Постепенно всё большее и большее число первичных структур белков захватывается «полем тяготения» спирали молекулы ДНК или РНК и вынужденно соединяются между собой на уровне тождественной мерности. Размер белкового слоя вокруг спирали молекулы ДНК или РНК постепенно растёт, и наступает момент, когда белковое поле полностью окружает спираль молекулы РНК или ДНК. Так появляется белковая оболочка у вирусов. Появление белковой оболочки вируса послужило началом новой эры эволюции материи — зарождению жизни. Белковая оболочка создала в своём внутреннем объёме условия значительно отличающиеся от условий вне её пределов. Она способствовала удержанию внутри себя органических и неорганических молекул, проникших через эту белковую сетку. Белковая оболочка вируса как бы процеживала воду первичного океана, собирая в своём внутреннем объёме растворённые в этой воде органические и неорганические молекулы. Подобная фильтрация морской воды позволяла накапливать органические молекулы в непосредственной близости от спирали молекулы ДНК или РНК. И, когда концентрация органических молекул достигала критического уровня, возникали условия для дублирования молекул ДНК или РНК и белковой оболочки. В результате этого процесса, возникала точная копия вируса. С этого момента можно говорить о зарождении жизни.

1. Физически плотная молекула ДНК или РНК.

2. Белковая оболочка.

3. Перепад мерности микропространства создаваемый внутренним объёмом молекулы ДНК или РНК.

4. Первичные структуры молекул белка.

P — аминокислоты белков.

R2 — свободные радикалы аминокислот белков.

LPr — уровень тождественной мерности первичной структуры молекулы белка.

 

Неоднородная вселеннаяРис. 4.3.14. Клетка и её второе материальное тело. Каждая молекула искривляет микропространство вокруг себя, следовательно живая клетка, образованная из органических и неорганических молекул, создаёт на втором материальном уровне деформацию, полностью повторяющую внешний вид самой клетки. Но, эта деформация оставалась бы незаполненной, если бы не наличие в клетке молекул ДНК и РНК, которые не только открывают качественный барьер между физическим и вторым материальным уровнями, но и создают условия для расщепления молекул на первичные материи их образующие во внутреннем объёме своих спиралей.

1. Физически плотная клетка.

2. Второе материальное тело клетки.

3. Ядро клетки.

4. Центриоли.

5. Зона смыкания между физическим и вторым материальным уровнями, — энергетический канал.

6. Аппарат Гольджи.

7. Митохондрии.

8. Эндоплазматическая сеть.

 

Неоднородная вселеннаяРис. 4.3.15. В ядре клетки происходит процесс расщепления молекул на первичные материи, их образующие. Освободившиеся при этом первичные материи начинают циркулировать по каналу, существующему между физически плотным и вторым материальным телами. При своём движении от физически плотного к второму материальному уровню, восходящие потоки первичных материй разворачиваются и начинают двигаться по направлению перепада мерности. Вокруг физически плотной клетки и её второго материального тела циркулирующие первичные материи создают изолирующую оболочку.

1. Физически плотное тело клетки.

2. Второе материальное тело клетки.

3. Клеточное ядро.

4. Центриоли.

5. Энергетический канал между физически плотной клеткой и вторым материальным телом.

6. Аппарат Гольджи.

7. Митохондрии.       

8. Изолирующе-защитная оболочка.

 

Неоднородная вселеннаяРис. 4.3.16. Физически плотная клетка со вторым и третьим телами. Второе материальное тело клетки отличается от третьего качественной структурой. Третье материальное тело образуется слиянием двух первичных материй G и F, а второе — одной первичной материей G. Они вместе образуют единую систему — следующую ступень эволюции живой материи. Появление у клеток третьего материального тела привело к значительно большей стабильности, жизнестойкости и более высокой степени приспособляемости к изменяющимся внешним условиям среды.

1. Физически плотное тело клетки.

2. Второе материальное тело клетки.

3. Клеточное ядро.

5. Энергетический канал между физически плотной клеткой, вторым и третьим материальными телами.

6. Аппарат Гольджи.

7. Митохондрии.       

8. Эндоплазматическая сеть.

9. Центриоли.

10. Клеточное ядро.

 

Неоднородная вселеннаяРис. 4.3.17. Физически плотная клетка со вторым, третьим и четвёртым материальными телами. Четвёртое материальное тело образуется слиянием трёх первичных материй G, F и E, третье материальное тело образуется слиянием двух первичных материй G и F, а второе материальное тело — одной первичной материей G. Наличие четвёртого материального тела — это следующий качественный скачок в развитии живой материи, возможность для развития сознания на качественно другом эволюционном уровне.

1. Физически плотное тело клетки.

2. Второе материальное тело клетки.

3. Третье материальное клетки.

4. Четвёртое материальное тело клетки.

5. Энергетический канал между физически плотной клеткой, вторым, третьим и четвёртым телами.

6. Аппарат Гольджи.

7. Митохондрии.

8. Эндоплазматическая сеть.

9. Центриоли.

10. Клеточное ядро.

 

Неоднородная вселеннаяРис. 4.3.18. Если клетка имеет физически плотное тело и второе материальное тело (изначальная клетка), то, после разрушения или гибели физически плотного тела, второе материальное тело не исчезает. Потоки первичной материи G, пронизывающие всё пространство планеты, насыщают собой второе материальное тело. В результате этого, второе материальное тело сохраняет свою целостность и после потери физически плотного тела, которое создало его. Естественно, насыщение второго материального тела значительно отличается от насыщения через физически плотное тело, но тем не менее, оказывается достаточным для сохранения целостности второго материального тела. При этом, второе материальное тело оказывается как бы «замороженным» и это состояние будет сохраняться до тех пор, пока не восстановится физически плотное тело.

2. Второе материальное тело клетки.

5. Толщина второго материального тела клетки.

G — Первичная материя пронизывающая пространство и насыщающая второе материальное тело.

 

Неоднородная вселеннаяРис. 4.3.19. Если клетка имеет физически плотное тело, второе и третье материальные тела, то после разрушения или гибели физически плотного тела, второе и третье материальные тела не исчезают. Потоки первичных материи G и F, пронизывающие всё пространство планеты, насыщают собой, как второе, так и третье материальные тела. В результате этого, как второе, так и третье материальные тела сохраняют свою целостность и после потери физически плотного тела, которое создало их. Естественно, насыщение второго и третьего материальных тел значительно отличается от насыщения их через физически плотное тело, но тем не менее, оказывается достаточным для сохранения их целостности.

2. Второе материальное тело клетки.

3. Третье материальное клетки.

5. Толщина второго материального тела клетки.

G и F — первичные материи, пронизывающие пространство и насыщающие второе и третье материальные тела.

 

Неоднородная вселеннаяРис. 4.3.20 Если клетка имеет физически плотное тело, второе, третье и четвёртое материальные тела, то после разрушения или гибели физически плотного тела, второе, третье и четвёртое материальные тела не исчезают. Потоки первичных материй G, F и E , пронизывающие всё пространство планеты, насыщают собой второе, третье и четвёртое материальные тела. В результате этого второе, третье и четвёртое материальные тела сохраняют свою целостность и после потери физически плотного тела. При этом насыщение этих тел этими первичными материями будет отличаться от насыщения их через физически плотное тело.

2. Второе материальное тело клетки.

3. Третье материальное клетки.

4. Четвёртое материальное тело клетки.

5. Толщина второго материального тела клетки.

G, F и E — первичные материи, пронизывающие пространство и насыщающие второе, третье и четвёртое материальные тела.

 

Неоднородная вселеннаяРис. 4.3.21 Первая фаза деления клетки. Когда концентрация органических веществ, возникших в клетке в результате фотосинтеза или поглощёных клеткой из внешней среды становится критической, она теряет свою устойчивость, и начинается процесс деления. Центриоли клетки расходятся по противоположным полюсам клетки и становятся центрами, вокруг которых и происходит процесс деления.

1. Физически плотная клетка.

2. Второе материальное тело клетки.

3. Клеточное ядро.

4. Клеточные центриоли.

5. Канал, по которому циркулируют материи.

6. Аппарат Гольджи.

7. Митохондрии.

8. Эндоплазматическая сеть.

9. Хромосомы ядра.

 

Неоднородная вселеннаяРис. 4.3.22. Белковые нити подтягивают к центриолям хромосомы из старого ядра клетки, и это является началом формирования двух новых клеток. В начале новые ядра содержат половинный набор необходимых хромосом, поэтому два канала ими создаваемых практически эквивалентны каналу ядра до начала деления. Мерность микрокосмоса клетки почти не изменяется и сохраняется баланс потоков между физическим и вторым материальным уровнями клетки.

1. Физически плотная клетка.

2. Второе материальное тело клетки.

3. Клеточное ядро.

4. Клеточные центриоли.

5. Канал, по которому циркулируют материи.

6. Аппарат Гольджи.

7. Митохондрии.

8. Эндоплазматическая сеть.

9. Хромосомы ядра.

 

Неоднородная вселеннаяРис. 4.3.23. Каждая хромосома в таких ядрах из накопленных в клетке органических веществ начинает воссоздавать своего зеркального двойника, что является естественным стремлением любой системы к состоянию максимальной устойчивости. При завершении этого процесса, внутри одной клетки образуются два ядра, каждое из которых имеет канал, по которым материя перетекает на второй материальный уровень.

1. Физически плотная клетка.

2. Второе материальное тело клетки.

3. Клеточное ядро.

4. Клеточные центриоли.

5. Канал, по которому циркулируют материи.

6. Аппарат Гольджи.

7. Митохондрии.

8. Эндоплазматическая сеть.

9. Хромосомы ядра.

 

Неоднородная вселеннаяРис. 4.3.24. При распаде физически плотной клетки формируется второе материальное тело клетки. Причём, концентрация материи G во вторых материальных телах клетки в несколько раз превышает балансное соотношение для второго материального уровня. Избыточное насыщение возникает вследствие того, что во время распада старой клетки по ядерным каналам на уровень вторых материальных тел перетекает во много раз больше первичной материи G, чем при нормальных условиях, в то время, как потеря вторыми материальными телами первичной материи G остаётся прежней. И, как следствие, возникает избыточное насыщение.

1. Физически плотная клетка.

2. Второе материальное тело клетки.

3. Ядра клетки.

5. Каналы ядер клетки.

10. «Толщина» второго материального тела.

 

Неоднородная вселеннаяРис. 4.3.25. После завершения распада старой физически плотной клетки, на втором материальном уровне остаются два вторых материальных тела, которые пересыщены первичной материей G. Избыточное насыщение значительно превышает оптимальное. Поэтому, когда прекращается поток первичных материй с физически плотного уровня, избыток первичной материи G начинает перетекать уже со второго материального уровня на физический. Причём, перетекание на физически плотный уровень происходит по тем же самым каналам, по которым она перетекала на второй материальный уровень. Следует отметить, что между моментом полного разрушения старой физически плотной клетки и возникновением обратного потока первичной материи G, существует некоторый промежуток времени.

1. Физически плотная клетка.

2. Второе материальное тело клетки.

3. Ядра клетки.

5. Каналы ядер клетки.

10. «Толщина» второго материального тела.

 

Неоднородная вселеннаяРис. 4.3.26. Обратный поток первичной материи G со второго материального уровня на физически плотный создаёт на физически плотном уровне проекции двух вторых материальных тел. Эти проекции продолжают насыщаться первичной материей G до тех пор, пока плотность этих проекций на физически плотном уровне не станет соизмерима с плотностью самих вторых материальных тел на втором материальном уровне. Можно сказать, что в результате этого процесса на физически плотном уровне формируются два вторых материальных тела.

1. Физически плотная клетка.

2. Второе материальное тело клетки.

2’. Проекция второго материального тела клетки на физически плотном уровне.

3. Ядра клетки.

5. Каналы ядер клетки.

9. Хромосомы ядра.

10. «Толщина» второго материального тела.

 

Неоднородная вселеннаяРис. 4.3.27. По двум матрицам вторых материальных тел на физически плотном уровне синтезируется две новые физически плотные клетки, которые являются точными копиями клетки до деления. Матрицы (проекции) вторых материальных тел вынуждают, создавая соответствующие перепады мерности на физически плотном уровне, соединятся молекулы на физически плотном уровне в том же самом порядке, как они были соединены в старой клетке. Вновь собранные молекулы, по тем же причинам, образуют клеточные включения, мембрану и, в конечном итоге, на месте старой клетки появляются две новые, которые не являются абсолютной копией старой клетки, хотя и очень близки к ней.

1. Физически плотная клетка.

2. Второе материальное тело клетки.

3. Ядра клетки.

5. Каналы ядер клетки.

10. «Толщина» второго материального тела.

 

Неоднородная вселеннаяРис. 4.3.28. После завершения процесса формирования двух новых физически плотных клеток по образу и подобию старой, мембраны новых клеток создают перепад мерности, направленный внутрь новых клеток. Этот перепад возникает в результате различия в концентрации органических и неорганических молекул внутри этих клеток и вне. Различия в концентрации возникают вследствие того, что клеточные мембраны имеют избирательную проницаемость для молекул. Вследствие этого и возникает различие в концентрации молекул. Перепад мерности, направленный внутрь клеток вынуждает все молекулы, попавшие в пределы этого перепада, двигаться внутрь клеток, где они, в свою очередь, расщепляются на первичные материи их образующие при попадании внутрь спиралей молекул ДНК и РНК. Первичные материи, высвобождённые в результате этого процесса, начинают насыщать вторые материальные тела на втором материальном уровне. Новорождённые клетки «оживают». Смерть старой клетки служит причиной рождения двух новых клеток и жизнь продолжается, причём, число живых клеток удваивается.

 

Неоднородная вселеннаяРис. 4.3.29. Спирали молекул ДНК и РНК на втором материальном уровне создают свою точную копию из первичной материи G. Это связано с тем, что эти молекулы, имея огромный молекулярный вес, имеют спиральную форму. Спиральная форма создаёт условия, когда влияние каждого атома, входящего в состав этих молекул, на микропространство создаёт во внутреннем объёме этих спиралей такой уровень мерности, при котором открывается качественный барьер между физически плотным и вторым материальным уровнями. При этом не происходит распада этих молекул. Распадаются только молекулы, которые попадают внутрь спиралей.

1. Спираль молекулы ДНК или РНК на физически плотном уровне.

2. Второе материальное тело молекулы ДНК, РНК.

3. Качественный барьер между физическим и вторым материальным уровнями планеты.

4. Увеличенный участок спирали на физическом уровне.

5. Увеличенный соответствующий участок спирали на втором материальном уровне.

 

Неоднородная вселеннаяРис. 4.3.30. Внешний сигнал в виде ионного кода достигает тела собственно нейрона. Другими словами, несколько дополнительных ионов оказываются внутри нейрона. При этом, ионный баланс внутри нейрона изменяется. Эти «лишние» ионы провоцируют дополнительные химические реакции, в результате которых появляются новые или разрушаются старые электронные связи, и изменяется молекулярный вес и качественная структура молекулы на физически плотном уровне.

1. Спираль молекулы ДНК или РНК на физически плотном уровне.

2. Второе материальное тело молекулы ДНК, РНК.

3. Качественный барьер между физическим и вторым материальным уровнями планеты.

4. Увеличенный участок спирали на физическом уровне.

5. Увеличенный соответствующий участок спирали на втором материальном уровне.

6. Дополнительные атомы, присоединившиеся к выделенному участку спирали молекулы ДНК или РНК на физическом уровне.

 

Неоднородная вселеннаяРис. 4.3.31. Дополнительное искривление микропространства, вызванное присоединившимися «лишними» атомами, изменяет структуру второго материального тела молекулы ДНК или РНК. Отпечаток второго материального тела насыщается потоком первичной материи G, и таким образом восстанавливается тождество структур спиралей молекулы ДНК или РНК на физически плотном и на втором материальных уровнях.

1. Спираль молекулы ДНК или РНК на физически плотном уровне.

2. Второе материальное тело молекулы ДНК, РНК.

3. Качественный барьер между физическим и вторым материальным уровнями планеты.

4. Увеличенный участок спирали на физическом уровне.

5. Увеличенный соответствующий участок спирали на втором материальном уровне.

6. Дополнительные атомы, присоединившиеся к выделенному участку спирали молекулы ДНК или РНК на физическом уровне.

7. Отпечаток внешнего сигнала на втором материальном уровне.

СодержаниеНеоднородная вселенная

От автора
Предисловие
Глава 1. Аналитический обзор
1.1. Значимость онтологии физических процессов  для философской и научной мысли человечества
1.2. Резюме
Глава 2. Неоднородность пространства
2.1. Постановка вопроса
2.2. Качественная структура пространства
2.3. Система матричных пространств
2.4. Природа звёзд и «чёрных дыр»
2.5. Природа образования планетарных систем
2.6. Резюме
Глава 3. Неоднородность пространства и качественная структура физически плотного вещества
3.1. Постановка вопроса
3.2. Качественная структура микропространства
3.3. Влияние материальных объектов микрокосмоса  на окружающие их пространство  на окружающие их пространство
3.4. Резюме
Глава 4. Необходимые и достаточные условия  возникновения жизни во Вселенной
4.1. Постановка вопроса
4.2. Условия зарождения жизни на планетах
4.3. Качественные особенности органических  молекул и их роль при зарождении жизни  молекул и их роль при зарождении жизни
4.4. Резюме
Список литературы
Описание рисунков

-----

Скачать книгу Николай Викторович Левашов "Неоднородная вселенная"

 

 

За годы работы сайта многие из вас неоднократно задавали вопрос: как можно помочь в развитии портала и вот, после получения очередного счета на продление услуг хостинга я подумал:А ПОЧЕМУ БЫ И ДА!

И сделал форму с возможностью для желающих поддержать портал 
Я буду признателен за оценку моего творчества для вас! 


ЮMoney (Яндекс деньги): 4100117666345404